Advanced Konsulko
Telematic Group

SYSTEMS

Device-side Software Update Strategies for
Automotive Grade Linux

Konsulko Group, sponsored by ATS Advanced Telematic Systems GmbH

Overview

This whitepaper explores the area of software update strategies for devices running Automotive
Grade Linux. The starting point is understanding several key use cases for updating software in
an AGL' system. Several open source device-side software update mechanisms are compared
with a focus on their ability to meet the stated use cases. Finally, recommendations are made
for an approach that can be implemented for inclusion in AGL.

Use Cases and Requirements

The topic of software update on any computing device is very broad and can only be examined
properly by narrowing the scope of the system, operating conditions, and the policies
established for executing a software update. The following sections describe the use cases
considered when evaluating the various mechanisms that could be employed in an AGL
software update strategy.

System Description

AGL systems include both IVI> and ADAS? devices that run Linux on at least one processor in
the system. The complete IVl or ADAS system is not necessarily limited to a single processing
node, but is normally part of a larger network that includes a number of ECU* nodes throughout
the automobile. Due to this distributed architecture it is often necessary to update software on

' Automotive Grade Linux (https://www.automotivelinux.org/agl-specification)
2 In-Vehicle Infotainment

3 Advanced Driver Assistance System

4 Electronic Control Unit

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://www.automotivelinux.org/agl-specification)
https://creativecommons.org/licenses/by-sa/3.0/us/

the ECUs as well as the node running AGL. The device running AGL is generally the node
containing networking or other external communication capabilities to handle input of a software
update image. As such, it will normally be the focal point for software update in the entire
automobile providing update services for itself and multiple ECUs. For the AGL node, an update
mechanism must support update of all software loadable bootloaders, the kernel and supporting
configuration data, and all Linux filesystems as the system design may or may not require
updating any and all of these software artifacts. Finally, AGL'’s build system is based on
OpenEmbedded so any technology must be able to integrate into a well-behaved
OpenEmbedded build environment.

Operating Conditions

An automobile product has several operating conditions that are both unique and also share
similarities with other devices. First, and foremost, the automobile is a mobile device, which
requires the ability to be updated at any location with minimal impact to the owner. The
automobile industry has historically relied on costly on-site visits to service facilities to update
software, however, with the increasing complexity and amount of software in an automobile this
approach does not scale. For this reason, support of OTA® software updates via wireless
networking has become a fundamental use case.

The automobile industry is subject to numerous safety regulations. As such, automobile
software updates must also be conducted in a manner in which safety is not compromised.
Failure is common and expected during software updates with causes that include image
corruption during installation, corrupted image/filesystem on storage medium, failure to receive
update image, and power failure during update. It is critical that a software update strategy
support deployment of updates such that if failure occurs, a previous version of the software can
be deployed such that the automobile is functional and safe to operate until a new update can
be deployed. In order to minimize the possibility of failure, updates must be deployed in an
atomic manner, guaranteeing integrity of the software update once it is deployed on the device.
In addition, the cost nature of OTA delivery methods such as 4G networks requires QoS to be
implemented to control the costs of deploying large software updates to a fleet of vehicle. A
software update may need to be delivered at specific time of day and at a specific bandwidth
rate corresponding to the region the automobile is sold or located within. Finally, the update
mechanism must be able to verify that the software has not been tampered with before
installation and must cooperate with a system-level chain of trust during the boot process that
verifies images starting a power-on through to application lifecycle. This is commonly handled
by executing in a trusted environment that leverages hardware features such as a Trusted
Platform Module (TPM) and Trusted Execution Environment (TEE). Popular TEEs include ARM
TrustZone and Intel TXT.

5 Over The Air

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://creativecommons.org/licenses/by-sa/3.0/us/

Policies

A software update mechanism needs the ability to support a flexible set of OEM software
update policies for the automobile. Each OEM has a different approach to the rate of updates,
quantity, and size of updates. An OEM with a higher rate of updates will require an update
mechanism that’s optimized not only for the baseline requirements but also for speed. Some
OEMs may provide value-add features that are unlocked by a recurring fee. These value-add
features will require the ability to enable or disable a specific feature based on a fee.
Regulations requiring a recall may require the OEM to rollback an update due to a recall notice.
Finally, the policy of update deployment timing will be defined by the OEM to control operator
experience (e.g. only at “key-off” and with operator acknowledgement) as well as meet any
safety requirements.

Summary

The following requirements are derived from the use cases and are listed in priority order:
1. Atomic software release update
On failure, deploy previous working bootloader, kernel and configuration, and filesystems
on AGL device
Update of bootloader, kernel and configuration data, and filesystems on AGL device
Support for OpenEmbedded-based builds
Support for updating both the AGL device and any ECU devices
Flexible delivery of software image(s) with QoS® controls and supporting arbitrary
interfaces (WiFi, 4G, USB, etc.)
Support for signing of images and verification of images on installation
Support trusted boot and execution of software update in a trusted application
environment leveraging the platform’s hardware TPM and/or TEE features.
9. Enable/disable a specific feature and apply/rollback system updates incrementally rather
than through a complete OS update that replaces the filesystem.

N

o 0 b w

© N

Open Source Software Update Tools

Historically, software update on embedded Linux systems has been implemented in a “one-off”
manner by companies shipping products based on Linux. Typically, the details of how an update
is performed has been very specific to the system and hardware design as well as the amount
of storage space available to implement a software update mechanism. Over time, these ad
hoc update methods have matured to where requirements have begun to show some
commonality allowing the problem of software update to be solved in a general manner. The
following projects provide implementations of common requirements for embedded Linux
software update.

® Quality of Service

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://creativecommons.org/licenses/by-sa/3.0/us/

SWUpdate

SWuUpdate’ is an extensible software update framework that supports atomic update of arbitrary
software images in a Linux system. SWUpdate defines a standard compound image format
based on cpio which contains a header, software description in XML, and any number of
software update sub-images. It allows for extensible image parsers to support new software
image types as well as extensible handlers to support new protocols or installers for specific
storage peripherals and layouts. The XML-based software description provides a manifest of all
the software sub-images contained in the compound image. It defines attributes corresponding
to the version of a software release and the name and type of each sub-image contained within
that software release. For example, a software release for a typical Linux system may have
sub-images for the ziImage, dtb, root filesystem, and apps filesystem. The compound image and
each sub-image can be hashed with SHA256 and signed with an AES256 key for use in
verification before installation.

SWUpdate can operate in either a single copy or dual copy update scheme. Single copy
updates require updates to be managed by the bootloader booting into a kernel and initrd that
then runs the SWUpdate tool to install a new set of software images. This approach conserves
space but does not allow for fallback to a known good software image on failure. Rather, it
requires reinstall of a previously failed image or download of a new software after reboot from a
failed install. This approach is improved upon by using a typical dual copy approach which
involves keeping a known good recovery copy of the software in a second partition. SWUpdate
supports a dual copy software update strategy by use of Software Collections. A Software
Collection is simply two named alternate copies of software images with attributes defined to
describe what the target installation location is for each copy. This allows SWUpdate to be
called to deploy to either storage partition by specifying which Software Collection to deploy to
the storage device.

There’s no explicit support for integrating SWUpdate into a TEE but there’s no reason it could
not be ported to such an environment. SWUpdate provides a reference mongoose webserver
for use as a target-based software update user interface. However, it also supports an API for
arbitrary software to communicate with it in order to install images and receive status on
installation status. It is possible to integrate the RVI SOTA client with SWUpdate using this API
to perform the installation. For compound image generation, SWUpdate provides a
meta-swupdate® layer which supports generation of signed images in OpenEmbedded. The
project has a small community around it and is also included in the buildroot® project.

7 https://sbabic.qgithub.io/swupdate/swupdate.html
8 https://github.com/sbabic/meta-swupdate/
® https://buildroot.org/

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://sbabic.github.io/swupdate/swupdate.html
https://github.com/sbabic/meta-swupdate/
https://buildroot.org/
https://creativecommons.org/licenses/by-sa/3.0/us/

Mender

Mender'® is a dual copy oriented framework that supports the end-to-end management of root
filesystem updates and rollback. It supports a OTA delivery server and provides a target side
software update tool to manage deployment of updates. Mender specifically supports only
U-Boot as the bootloader and implements support for rollback to the second copy of an OS
using U-Boot’s bootlimit feature. It does not support update of the bootloader itself nor does it
support incremental updates.

Mender is written in Go and provides a meta-mender layer for OpenEmbedded to support
building embedded systems including Mender support. There’s no explicit support for integrating
Mender into a TEE but there’s no reason it could not be ported to such an environment.

Mender does not appear to have any community adoption as evidenced by list posts and
commits only originating from Mender Software itself.

Resin

Resin'' is a container-based frame for delivering rolling updates to embedded Linux systems. It
is a client/server system where the server has support for building packages and containers with
the package content. In addition, the server has a docker registry for the containerized
applications. On the target, a supervisor application runs in a container providing monitoring of
the device as well as handling rollout of new docker containers with applications. This can all be
managed from the cloud infrastructure maintained by resin.io.

Resin has no provision for managing updates to the core operating system binaries. It is
completely focused on an immutable and non-updated base OS and fluidly updated applications
within containers. These containers are stateless except that a /data directory is provided that
will persist per device between updates. Currently, support for binary deltas of Docker container
updates is a feature that is in beta. Resin makes use of TLS for the client/server connection
using RSA for key exchange and AES256 for data encryption. There’s no explicit support for
integrating Resin OS into a TEE but there’s no reason it could not be ported to such an
environment. A meta-resin layer for OpenEmbedded is provided to support building the base
Resin OS for deployment on target devices.

Resin.io started as a commercial service only and then moved to open source their framework
in late 2015. As Resin OS has support for basic I/O on several popular community boards
(Raspberry Pi, Edison, BeagleBone) it seems to have gained some community support as
evidenced by commits from those outside of Resin itself.

10 https://mender.io/

" https://resin.io/

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://mender.io/
https://resin.io/
https://creativecommons.org/licenses/by-sa/3.0/us/

swupd

swupd' is a revisioned software update mechanism which was designed to meet the
requirements of the ClearLinux™ distribution project from Intel. It is intended for use in Linux
systems that update software in small increments at a rapid pace. Swupd does not use
packages as a unit of update like traditional Linux distributions. Instead, swupd defines bundles
which are a composed of a set of specific package versions. A bundle is the smallest installable
component in an swupd system. These bundles are combined into a OS release that carries a
single version number. By default, swupd demands that the Linux distribution be designed to
operated as a stateless Linux OS. That is, an unpopulated /etc/ directory results in a bootable
system that is factory reset.

Swupd provides client and server side tools to manage updates. The swupd-client support
adding and removing specific bundles or updating to a new OS release atomically. In addition,
the client supports checking the update server for a new OS release. There’s no explicit support
for integrating swupd-client into a TEE but there’s no reason it could not be ported to such an
environment. The swupd-server provides tools to create bundles, create OS releases, and host
them for consumption by the client. The meta-swupd' layer integrates the swupd-server tools
for generation of bundles and OS releases for OpenEmbedded as well as the swupd-client tools
to support software updates on the target filesystem.

An OS release is defined by a “Manifest of manifests” which lists each bundle that’s part of a
release. Each bundle has a manifest which lists each change to a file, directory, symlink, etc.
Swupd makes use of bsdiff (binary diff utility) to minimize the size of an OS update. Each
manifest and change is identified using HMAC-256 to support verification of the OS release
content. When an update is requested, the client downloads all manifests, then uses those to
determine the packs of updates to download, and then applies each change in sequence. Post
update scripts can be triggered using the systemd update-triggers.target.

Swupd was created for the ClearLinux distribution and also adopted by the Ostro OS™
distribution, both of which are Intel project. The project mailing lists are dominated by Intel
employees and it appears there’s no adoption of swupd outside of these Intel projects.

OSTree

OSTree is similar in scope to swupd, providing support for atomic upgrade of Linux filesystems.
A server composes content to be used on a client system where OSTree manages deployment
of the content. By default, it defines two persistent directories across updates, /etc and /var,

12 https://github.com/clearlinux/swupd-client

13 https://clearlinux.org/

4 http://qit.yoctoproject.org/cqit/cgit.cgi/meta-swupd/
'S https://ostroproject.org/

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://github.com/clearlinux/swupd-client
https://clearlinux.org/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-swupd/
https://ostroproject.org/
https://creativecommons.org/licenses/by-sa/3.0/us/

rather than operating as a stateless system like many systems. OSTree is best described as a
configuration management tool for filesystem binaries. It allows for multiple releases to be
stored as deltas of files, generated using bsdiff on the server or build system. OSTree internally
follows the design of git using tree objects to track the history of filesystems including both
content and metadata. It uses SHA-256 to hash changes in the tracked filesystems and GPG'®
is used to sign and verify commits/releases.

An administrative tool is provided on top of this version control system to management
deployment of filesystems. ostree admin upgrade will update a deployment tree to the latest
release on the update server and prepare the system to boot that release on the next boot.
Likewise, ostree admin deploy and ostree admin undeploy can deploy or rollback a specific
commit or version for the next boot. OSTree can also manage bootloader configuration files that
conform to the boot loader specification'”. The Gnome Continuous project maintains a base
Gnome OS that conforms to the distribution needs (/usr Merge'®) and patches to support
OSTree compliant builds for OpenEmbedded have been previously submitted'®. There’s no
explicit support for integrating the ostree admin tool into a TEE but there’s no reason it could not
be ported to such an environment.

OSTree has been adopted by Gnome Continuous®, rpm-ostree/Project Atomic?', and flatpak?.
The ostree-list is not very high volume but shows a number of different email domains indicating
use by a number of companies and individuals including those from the Gnome Project and Red
Hat.

Other Technologies

There are a number of other technologies that are used in ad hoc software update mechanisms.
Many make use of a dual copy scheme as described in the SWUpdate section. However, this is
not always sufficient to manage incremental updates. This results in sometimes layering
technologies such as overlayfs? on top of a dual copy scheme in order to support maintenance
updates without requiring a complete filesystem update.

Recommendations

Before making the final recommendations, we compare and contrast the pros and cons of each
of the update technologies.

16 https://www.gnupg.org/

7 https://www.freedesktop.org/wiki/Specifications/BootLoaderSpec/

18 https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/

19 hitp://lists.openembedded.org/pipermail/openembedded-core/2013-August/083595.html
20 https://wiki.anome.org/Projects/GnomeContinuous

21 http://www.projectatomic.io/

2 https://github.com/flatpak/flatpak

2 hittps://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://www.gnupg.org/
https://www.freedesktop.org/wiki/Specifications/BootLoaderSpec/
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/
http://lists.openembedded.org/pipermail/openembedded-core/2013-August/083595.html
https://wiki.gnome.org/Projects/GnomeContinuous
http://www.projectatomic.io/
https://github.com/flatpak/flatpak
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://creativecommons.org/licenses/by-sa/3.0/us/

Both OSTree and swupd provide a robust way to manage Linux filesystem updates when the
system is working properly. Both assume that the underlying filesystem is not corrupt and that
there is no data loss. Because of this, neither satisfies all possible failure cases on its own.
OSTree is more conservative that swupd in that it requires a reboot on any update when
deploying its newly configured filesystem. Swupd does not seem to have wide community
adoption (used only in two Intel projects) and so the recommendation is to focus on OSTree as
a component of a software update solution for systems requiring fine-grained and frequent
updates as well as rollback of updates. Both Mender and Resin OS seem to be primarily driven
by their commercial efforts and not widely adopted as update mechanisms by other projects.
Mender is focused on a dual-copy only strategy and Resin OS is fundamentally based on a
base OS that requires containers for all applications.

As mentioned, OSTree is not sufficient to meet all failure scenarios on its own. In order to
handle the case of a corrupted filesystem or updating boot loaders that do not reside on a Linux
filesystem it's necessary to couple it with another system. Certainly if everything goes correctly,
a pure OSTree system could update bootloaders on its own with appropriate tools in the
filesystem. However, nothing OSTree offers handles the case of its own underlying filesystem
become corrupt and the need to fall back to the last known working system. This is where a dual
copy approach becomes very important in a reliable system. SWUpdate provides a reasonable
implementation of a dual copy approach and has a number of people starting to make use of it
as a simple software update framework. It needs to be extended to support additional software
fetching APIs but the maintainer seems open to contributions.

It is our recommendation that the reference AGL software update strategy make use of
SWUpdate in a dual copy configuration and integrate OSTree support. This allows recovery
from a corrupt partition for the exception case, but also optimizes the common case where
small, incremental updates can be quickly applied or rolled back as needed to me OEM policy.
As a part of this effort, it will be necessary to also provide a reference port of the SWUpdate and
OSTree administration tools to a TEE to demonstrate the ability to execute the update process
in a trusted environment. With the update process executing in the TEE, the cryptographic
verification performed by the SWUpdate and OSTree update mechanisms is now a trusted
action. The software running in the TEE is only one component of the overall attack surface of
the entire software update process. It is also critical that the client/server SOTA network protocol
and key handling processes follow best security practices or else the actual content being
delivered could be compromised. It is recommended to support OP-TEE using an ARM QEMU
target for the proof-of-concept implementation such that anybody can download and test the
solution running on QEMU. This comprehensive approach is designed to satisfy all the
requirements set forth in this paper.

Copyright 2016 Konsulko Group and ATS Advanced Telematic Systems GmbH
CC BY-SA 3.0 US (https://creativecommons.org/licenses/by-sa/3.0/us/)



https://creativecommons.org/licenses/by-sa/3.0/us/

