Konsulko

DTCON — Portable Device Tree Connector



Konsulko

Open Source Hardware thrives

PN RIS

Many Linux based embedded boards are available to the community.
Raspberry PI(s)

Beaglebone and variants

Linaro’s 96 boards

C.H.L.P.

Orange Pl (*)

Minnowboard

o o O o o o O o

And a ton of others




Konsulko

What do people do with them

. hath By YL P T .

- Just tinker about with embedded Linux!

- Learn about how hardware works and how it interfaces with
Linux

- Make cool stuff with them.
= 3D printers (Replicape)
= Flydrones
= Water their lawns

= Make expansion boards to sell them.




Konsulko

Expansion boards

e, L SN . ¢

Sy Expansion boards are plugged into a physical connector
Single row, or double row.
Single connector, or multi connector

Provides power ground and electrical signals

Direct connection to the pads of the SoC package

Cc O O O O U

Modern SoCs are complicated




What it takes to make a new

. Konsulko
expansion board work?

- You connect wires!

- One set of wires is your UART, another is your [2C bus, a
couple of others is your GPIO lines etc.

- You need to describe those connections and peripheral
configuration in a manner than Linux understands.

- Many ways to describe hardware to Linux, we'll talk about
how you do it using Device Tree.




Konsulko

Device Tree and devices

/A

foo0: fool0 {
compatible = “barcorp,foo”;
status = “okay”;
baz = <12>;

interrupts = <12>;

}i

}i




Exactly the same as a device

soldered on the board Konsulko

e, L SN . ¢

- No difference than when having the expansion board soldered
on the main board.

- One needs to be intimately aware of the minutiae of each
board and as a consequence of the SoC Linux port.

- You need to get everything right. Maybe there’s a device
example configured similar to your own and you can copy.

- If not, you have to figure out everything.



Intermission:

Konsulko
Beaglebone example

e, L SN . ¢

1. Read the schematic of expansion board. Write down pinout, and jot down the
configuration of each pin and pin-number.

2. Lookup the connector chapter reference manual of the Beaglebone and figure out
which mode the processor pad that’s connected to the connector pin must be set to.

3. Look in the hardware reference manual of the SoC which pad is configured by which
pinmux register.

4. Look in the technical reference manual of the SoC which value to set in the hardware
pinmux register looked up before.

5. Fill in the pinmux configuration in the correct format and add in the device tree.

6. Fill in any other special configuration parameters to the device tree nodes
controlling the devices present on the expansion board.




Konsulko

Configuration is SoC specific

- The configuration is SoC specific.

- Figuring out the configuration is hard.

J Getting it wrong is frustrating (not easy to debug)

- Many community boards have compatible expansion connectors.
- Arduino Compatible
- RPICompatible

J Grove

J 96 boards




Mission:
Portable Expansion Boards

e, L SN . ¢

Konsulko

- Make expansion boards work in every board that has a
compatible expansion connector

- Simplify the expansion board definition

- Remove all SoC specific configuration from the expansion
board definition



The ubiquitous
Arduino Connector

Konsulko

v S

— ATMIGA K/ 1an 0w
jo——ADI AN - Y

xie
> Y

.

o S i phaty
. - S




The RPi Connector

-

Rev. 2
29/02/2086

Raspberry Pi 3 GPIO Header

3.3v
GPIO02
GPIOO3
GPIOD4
Ground
GPIO17
GPI1027
GPIO22
3.3v
GPIO10
GPIO9
GPIO11
Ground
ID_SD
GPIOUS
GPIOO6
GPIO13
GPIO19
GP1026
Ground

o/ o o o o o @ o

www . elementi4.com/RaspberryPi

Sv

Sv
Ground
GPIO14
GPIO1S
GPIO18
Ground
GPIO23
GPIO24
Ground
GPI10O25

") GPIOUS
W) GPIOO7
1 1D_SC

Ground
GPIO12
Ground
GPIO16
GPIO20
GPI021

Konsulko
yroup




The Beaglebone Connector Kensulko

D T RO

S P8
; 2
s MMCIDATE 1 i MMCIDAT?
AMNCIDATE) s ¢ MMCIDATSN
H GPIO 66 7 8 GPIO_67
=, GPIO 69 9 10 GPIO 68

UART4 RXD 11 12 GPIO_60
UART4 _TXD 13 14
GPIO 48 15 16
SPIO_CSO 17 18 SPIO_DY
19 20

22
GPIO 49 23 24 UARTI_TXD
GPIO_117 285 26 UARTI_RXD
GPIO_11S 27 28

GPIO 45 11 12 GPIO _4aa
GPIO_26
GPIO 47 1S 16 GPIO a6
GPIO 27 17 18 GPIO_65

25 26 GPIO_61

30 GPIO_122 29 30
32
s LEGEND 33 34
36
- (AVAILABLE DIGITAL ___ ]
40 39 ao

GPIO 20 a1 a2
a4
a6

« w
o =
« -
] N




Baseboards are commodities

Cc O O O O U

Konsulko

e, L SN . ¢

The base board is a commodity.

The expansion boards are what's important.
Choose the right baseboard for my application.
Base board makers compete in a level playing field.

Increase the community size by reducing fragmentation.

(ARM) Multiarch kernels + portable connectors -> Same kernel
+ root filesystem boots on every board.




Konsulko

dtcon: DT Connector

- An extcon driver

- Defines the core connector constructs.
1 connector
J functions

- bridge drivers

- proxy drivers




Konsulko

connector

PN RIS

connector/#address-cells -> connector addressing
Each node contains one or more reg addresses
reg addresses are pin#

contain properties unique for each connector pin

Cc O O O O

|.e. pad name, textual modes, pinmuxes etc.




Konsulko

functions

- Each pin may be assigned a function.

- Defines set of pins that comprise a function, as well as
allowable combination.

- Defines properties that configure a bridge driver (i.e. gpio)

- Defines properties that configure a proxy driver, i.e.
parameter names and parameter transformations.




Konsulko

bridge driver

e, L SN . ¢

- Drivers that act a bridge between the connector domain and
the base DT domain.

- They are drivers that supply services to other drivers in a way
that can’t be expressed using a proxy driver.

- Example of bridge driver is GPIO, controls a set of pins as a
single gpio driver and consolidating all pins that can be set to
GPIO mode on the connector as a single driver.




Konsulko

proxy driver

e, L SN . ¢

- Uses configuration from function it is part of to request pins
from the connector and configure them properly for it to work

- It has a device target which is a pointer to the device that's
going to be configured and used.

- There is a single proxy driver for all classes of devices that can
be supported.

- Proxy drivers deal with devices that provide no services to
other drivers. Those need bridge drivers.



Real example

Konsulko
Beaglebone capes

e, L SN . ¢

- Beaglebone is a relatively popular board
- Mainline kernel with working cape support

- Extensive pinmuxing options stresses the connector
infrastructure.

- Avery good selection of peripherals covering corner cases



Real example
Beaglebone & a few capes

e, L SN . ¢

Konsulko

- Beaglebone is a relatively popular board
- Mainline kernel with working cape support

- Extensive pinmuxing options stresses the connector
infrastructure.

- Avery good selection of peripherals covering corner cases



Konsulko

proposed driver DT bindings

e Nt « SLRSEE. %

/A
\ dtcon {
compatible = "extcon,dt-con";
status = "okay";
connector { .. };
functions { .. };

plugged { .. };




Konsulko

connector node DT bindings

R O i

connector {
#address-cells = <2>;
fsize-cells = <0>;
GPIOl 6: GPIOl 6 {
reg = <8 3>;
pad = "R9";

pinmuxes = <&gpmc_ad6>, <&mmcl dat6>,

<&gpiol 6 in &gpiol 6 out>;




Konsulko

Interrupting.. pinmuxes

R O i

/* the muxes for the dtcon */
&am33xx pinmux {
/* P8.3 GPIOl 6 */
gpiol 6 in: gpiol 6 1in {

pinctrl-single,pins = <

AM33XX TIOPAD(0x818,PIN INPUT PULLUP | MUX MODE7)




Konsulko

pinmuxes (cont)

e, L SN . ¢

- Connector driver handles all pinmux setting

- The list of enabled pins is used to lookup which pinmux
fragments to add to the selected state and enable them.

- Needs a patch to enable runtime pinmux state construction.

- Completely removes the need for a non-board support or SoC
developer to set muxaes.



Konsulko

function node DT bindings

L BT LRSI

- For each function there is a node which contains configuration
parameters for the function (not the device instance)

J Forthe bridge drivers, the contents are completely free-form

- For the proxy drivers, contents follow a general format

functions {

<function-name} { };

b




GPIO bridge driver Kensulko

dtcon gpio: gpio {
gplio-base = <256>;
#fmodes = <2>;

mode—-names = “in”, “out”;

gpio = <&gpio0 2 &UARTZ RXD &gpio0O 2 in &gpio0O 2 out>,

<&gpioZ2 11 &GPIOZ 11 é&gpio2 11 in &gpio2 11 out>,




GPIO bridge driver (cont) Kansulko

i3 « SLRSEE. %

- GPIO cannot be a proxy driver
- GPIO driver provide services to other drivers
- Interface with the pinctl subsystem.

- For GPIO controllers that support it they can be an
interrupt controller.

- Many drivers reference a GPIO as part of their operation
(i.e. dsr-gpios




Proxy drivers bindings

UART Konsulko
AL A Y NN
uart {
params {
rxd = { required; };

txd = { required; };

rts-optional { optional; gpio-property = “rts-
gpios”; gpio-mode = “out”;




Proxy drivers bindings
UART-cont Konsulko

uart {
uart@2 {
device = <&uarth>;

gpio = <&dtcon gpio>;

mux@0 {
txd = <&UARTS TXD &uartb txd>;
rxd = <&UARTS5 RXD &uart5 rxd>,

<&UARTS CTSN &uartd rxd muxl>;




Proxy drivers bindings

Konsulko
12C
i2c |
X params {
scl = { required; };
sda = { required; };

Y

- And so on... Proxy drivers are generally the same although
special behavior can be tackled with the match OF compatible
ID table.




Konsulko

Plugged: Just a bus

- compatible ="“simple-bus”; actually

- Target for overlays, anything dropped there will be
instantiated.

- More secure than vanilla overlays with a security

configuration option that disallows any overlays having a
target outside of the plugged node.




BB-BONE-UART Kensulko

S O i

BB BONE UART ({
compatible = “dtcon-uart”;
status = “okay”;

txd = <9 21>;

rxd = <9 22>;




BB-BONE-UART

Konsulko
sequence of events

e, L SN . ¢

J A UART compatible proxy driver is instantiated.

- Using the “uvart” function node we parse the “parameters”
node for connector properties that are representing a
connector property.

- We iterate over all children of the vart node for a device target
property.

- A match is found when the property points to the connector
node that the reg property matches.




BB-BONE-UART

sequence of events (cont) Konsulko

e, L SN . ¢

- The pinmux option that is part of the tuple is enabled

- All properties/child nodes are copied in the target device
node.

- Performed using a changeset so that they can be reverted.

- The target device is enabled with ‘status="okay”’ and it is
created.



Konsulko

BB-RELAY-4PORT

BB RELAY 4PORT ({
compatible = “simple-bus”;
status = “okay”;
gpio relay 4port: gpio relay 4port@0 {
compatible = “dtcon-pio”;
status = “okay”;
gpio-controller;

#gpio-cells = <2>;

pin-list = <9 15>, <9 23>, <9 12>, <9 27>;




BB-RELAY-4PORT (cont) Kensulko

N,
leds@0 {

compatible = “gpio-leds”;

status = “okavy”;

jp@1l

gpios = <&gpio relay 4port 0 GPIO ACTIVE HIGH>;

default-state = “keep”;




BB-RELAY-4PORT

Konsulko
sequence of events

AN Y P T .

- The dtcon-gpio device which is created using the pin-list property
to locate the matching connector nodes.

- Note that the numbering of the GPIOs are in the order they are
stated in the pin-list property.

- The backend gpiochips are located and kept in a list.

- When the led driver is probed internal API calls are forwarded to
the real GPIO drivers present.

- Unfortunately major rewrite of GPIO layer underway, patches do
not apply, WIP.




Konsulko

Development status

e, L SN . ¢

- Mostly works for standard devices (UART/I2C/SPI etc).

J GPIO is broken due to GPIO rewrite. Needs a cleaner interface
for cascaded GPIO operations.

- Pinmuxing needs patch to build a pinmux state dynamically.

- Bridge drivers for other hardware classes. PWM is next.

- Mainline will take quite a few iterations.




Konsulko

Thank you!

Questions?




