
Software, Over the Air
Leon Anavi
Konsulko Group under contact by ATS
AGL Face to Face Technical Meeting
25 – 27 May, Vannes, France



SOTA

 Updating software is important.

It’s even more important when it’s software 
running on 3 metric tons of fast-moving steel.

 Getting your users to update software is 
hard.

It’s even harder when your users are running 
software on a thing they don’t really think of as a 
computer.



GENIVI SOTA Project

 A complete suite for uploading, managing, 
queueing, transmitting, validating, and deploying 
software updates remotely to a fleet of vehicles

 Server + Client

 Open source repositories in GENIVI GitHub



SOTA Architecture



SOTA Server

 Web Server

 SOTA Core Server

 External Resolver



SOTA Client

 SOTA client implementation written in the Rust 
programming language (ATS is also investigating 
a C implementation)

 Remote Vehicle Interaction (RVI) and/or HTTPS 
communication based on JSON-RPC

 Integration of RVI SOTA Client in Automotive 
Grade Linux (AGL) and GENIVI Development 
Platform (GDP) through Yocto/OE recipes and 
layer meta-rust



SOTA Client & AGL

 Layer meta-rust in AGL-repo which provides 
recipes for building Rust and Cargo 

 Recipe rvi-sota-client_git.bb in layer meta-agl 
which builds and deploys RVI SOTA client and its 
systemd service



Running SOTA client

 Add RVI SOTA client to the image by appending 
the following line to conf/local.conf:
IMAGE_INSTALL_append = " rvi-sota-client "

 Run Docker images for RVI server and client node

 On the target device add IP of rvi-client in 
/etc/hosts

 On the target device restart systemd service rvi-
sota-client and verify that it is ready to accept 
connections



How does it work?

 SOTA client downloads the binaries from the 
server, and then hands them over to the system 
for installation

 Dbus interfaces for communication with to any 
software compatible with GENIVI Software 
Management APIs

 WebSocket interface for direct communication 
with HTML5-based applications

 Documentation: https://genivi.github.io/rvi_sota_server

https://genivi.github.io/rvi_sota_server


Installation Strategy

 Whitepaper about software update management 
on AGL devices by Matt Porter (CTO of Konsulko 
Group), sponsored by Advanced Telematic 
Systems (ATS): http://bit.ly/25cZVJZ

 Join the discussion in AGL mailing list

http://bit.ly/25cZVJZ


Installation Strategy

Requirements (in priority order):

1. Atomic software release update

2. On failure, deploy previous working bootloader, 
kernel and configuration, and filesystems on AGL 
device

3. Update of bootloader, kernel and configuration 
data, and filesystems on AGL device

4. Support for OpenEmbedded-based builds

5. Support for updating both the AGL device and any 
ECU devices



Installation Strategy

6. Flexible delivery of software image(s) with QoS 
controls and supporting arbitrary interfaces

7.Support for signing of images and verification of 
images on installation

8. Support trusted boot and execution of software 
update in a trusted application environment 
leveraging the platform’s hardware TPM and/or TEE 
features

9. Enable/disable a specific feature and 
apply/rollback system updates incrementally



OSS Update Tools

 SWUpdate

 Mender

 Resin

 swupd

 OSTree

 Other



Trusted Zone

 Execute update process in Trusted Execution 
Environment (TEE)

 Support OP-TEE using an ARM QEMU target for 
PoC


	Slide 1
	Mission
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

