
A Comparison of
Linux Software Update Technologies

Matt Porter, Konsulko Group
Embedded Linux Conference Europe 2016

Overview

● Background of Linux software update
● Linux software update strategies
● Detailed look at each FOSS project

○ Strategy employed
○ Other features
○ Maturity
○ Community
○ Downstream projects

Linux software update history

● H.J. Lu’s Boot-root distributions
○ Boot and build the rest, no update

mechanism
● MCC, TAMU, and SLS

○ Packages in tarballs, no dependencies
● Slackware

○ Packages in tarballs, no dependencies
○ Per release scripted updates, flaky if too old

Linux software update history

● Debian, Red Hat Linux / Fedora, SUSE
○ Modern deb or rpm package management

with complete set of dependencies
○ Non-atomic incremental updates
○ Release updates by designating a set of

package versions
○ Driven by complex set of pre/post install

scripts which can leave updated systems in a
non-working state.

Linux software update
requirements

● There are many requirements
○ Tradeoffs are unique for

each product.
○ No exact steps only

guidelines
● Power fail safe?
● Frequent/infrequent updates?
● Bandwidth of update delivery

channel vs. size of updates?
● Speed of update?
● Verification/Authentication?

Linux software update strategies
Traditional method

❑ Traditional non-atomic package-based releases
❑ Package based granularity with dependency

hierarchy
❑ apt and yum based updates may require luck

or other methods for reliability.
❑ Unacceptable for the embedded zoo.

Linux software update strategies
Full image updates

● Has been the standard approach since Linux in
embedded systems was popularized.

● Single image approach assumes the new update
will boot
○ Recoverable if update can be performed

from an immutable mechanism (fallback
factory bootloader)

● Dual image approach is inherently atomic
○ Bootloader will fallback to previously

working image on failure of update
● Update speed relative to size of full image

Linux software update strategies
Full image updates

Completely unrealistic and simplified dual image example

Linux image A
(active -> inactive)

Linux image B
(inactive -> active)

Bootloader

1) Boot active image

2) Receive and install update to
partition B.

3) Toggle B active and
A inactive. Reboot.

4) Boot new active image B.
Fallback to A if boot fails
(typically using watchdog
and/or heartbeat).

Linux software update strategies
Incremental atomic updates

● The new kid on the block that does crazy stuff,
likely to be called balderdash by the old guard.

● Driven initially by server needs
○ Incremental atomic upgrades that can be

quickly deployed or rolled back on demand.
○ Complete history of deployments

● Releases are composed of binary deltas
○ Not a package granularity
○ Deltas are per file modified
○ Size of updates are minimized

Linux software update strategies
Containers

● Not usually a complete upgrade solution
● Built on top of a core immutable distribution
● Applications only exist in a container instance
● Updates rolled out in container deltas

SWUpdate

● Single or dual image update framework
○ https://github.com/sbabic/swupdate
○ Written in C. GPL2 license.
○ Attempt to be modular with plugins
○ Supports signed images, local/remote

updates, and U-Boot.
○ meta-swupdate layer for Yocto Project

● Has several contributors besides original author
● Used at least by Siemens (http://sched.co/7rrA)

and Stefano’s own projects

https://github.com/sbabic/swupdate
https://github.com/sbabic/swupdate

SWUpdate

● Updates delivered in simple CPIO
archive

● Each individual image is described in
sw-description and integrity is validated
with a SHA256 hash.

● Handler plugins implement the details of
how each described image is handled.
○ U-Boot env update
○ NOR, NAND, UBI partition and write
○ MMC/SD/eMMC partition and write
○ Custom installers can enable FPGA

bitstream or uC firmware updates

SWUpdate

● sw-descriptions can be extended using custom
LUA parsers to support new features
○ multiple hardware platforms in one image

● Configuration file support via libconfig or XML
format by default

● Uses Kbuild for configuration
● Supports Mongoose web server and REST

interface to Hawkbit server for remote update
● Strange stuff exists like an implementation of a

userspace GPIO library that duplicates other
projects.

mender.io

● Dual image update framework
● https://github.com/mendersoftware/mender

● Designed as a client/server system
for OTA updates. Written in Go.
Apache 2 license.

● meta-mender layer supports
building the client into a device
image using YP/OE

● https://github.com/mendersoftware/meta-mender

● Project contributors are
overwhelmingly represented by
Mender employees.

https://github.com/mendersoftware/mender
https://github.com/mendersoftware/mender
https://github.com/mendersoftware/meta-mender
https://github.com/mendersoftware/meta-mender

mender.io

● Two client modes
○ Standalone - updates are triggered locally

(suitable for physical media or any network
update in pull mode)

○ Managed - client is a daemon and will poll the
server for updates.

● mender’s dual image or “A/B” scheme uses a
notion of “commit” when and update has booted
properly. On failure it will toggle the inactive/active
partitions as with a standard dual image approach

mender.io

● QEMU and BeagleBone Black reference platforms
○ That’s the bee’s knees for getting started easily

● As a complete demonstrable solution, mender
relies on some assumptions:
○ U-Boot Boot Count Limit, ext2/3/4fs, and Linux

env tools, and a specific U-Boot configuration
○ systemd (and required kernel config options) for

managed mode
○ a fixed layout of U-Boot in one partition, a

persistent data partition, and two A/B partitions
with rootfs/kernel.

mender.io

● Does not support raw NOR, NAND, UBI partitions
and volumes.

● Excellent documentation on use and customization.
● Ready to use platforms to test operation.
● Established project CI loop.
● Test/QA tools all available freely.

OSTree

● Incremental atomic upgrade mechanism
● https://github.com/ostreedev/ostree
● Self-described as “git for operating system

binaries”.
● Uses a git-like object store to record and deploy

complete file system trees using binary deltas.
● Depends on an immutable filesystem hierarchy

for the updated root filesystem
(https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/)

● Persistent data kept in /etc

https://github.com/ostreedev/ostree
https://github.com/ostreedev/ostree
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge

OSTree

● How does it work?
○ Target has a local copy of a repository in

/ostree/repo
○ Target has any number of “deployments”

stored in /ostree/deploy
● A deployment is stored physically in

/ostree/deploy/$OSNAME/$CHECKSUM and
uniquely identified with a SHA256 checksum

● Each deployment has its own copy of /etc
● Activation requires a reboot

OSTree

● Deploy and rollback
○ ostree-admin-upgrade
○ ostree-admin-deploy {REFSPEC}
○ ostree-admin-status
○ ostree-admin-undeploy {INDEX}

● Atomic updates are guaranteed by atomically
swapping a /boot symlink to a new deployment
/ostree/boot.foo directory

● A bind mount is established at boot time
pointing to the currently deployed filesystem.

OSTree

● There are many projects that have adopted
OSTree
○ Gnome Continuous

https://wiki.gnome.org/Projects/GnomeContinuous

○ Project Atomic http://www.projectatomic.io/

○ Flatpak https://github.com/flatpak/flatpak

○ Pulp Platform https://github.com/pulp/pulp_ostree

○ Automotive Grade Linux
https://jira.automotivelinux.org/browse/SPEC-194

○ https://git.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-extra.

git;a=summary

https://wiki.gnome.org/Projects/GnomeContinuous
https://wiki.gnome.org/Projects/GnomeContinuous
http://www.projectatomic.io/
https://github.com/flatpak/flatpak
https://github.com/pulp/pulp_ostree
https://jira.automotivelinux.org/browse/SPEC-194
https://jira.automotivelinux.org/browse/SPEC-194
https://git.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-extra.git;a=summary
https://git.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-extra.git;a=summary
https://git.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl-extra.git;a=summary

swupd

● Incremental atomic upgrade mechanism
● Originally part of ClearLinux project

○ https://github.com/clearlinux/swupd-client
○ https://github.com/clearlinux/swupd-server

● Functionality is very similar to OSTree.
● Updates are delivered as a stream of bundles

containing binary filesystem deltas.
● meta-swupd supports YP/OE target image

builds
○ http://git.yoctoproject.org/cgit/cgit.cgi/meta-swupd

https://github.com/clearlinux/swupd-client
https://github.com/clearlinux/swupd-client
https://github.com/clearlinux/swupd-server
https://github.com/clearlinux/swupd-server
http://git.yoctoproject.org/cgit/cgit.cgi/meta-swupd
http://git.yoctoproject.org/cgit/cgit.cgi/meta-swupd

swupd

● Key difference is that the swupd-client does not
require a reboot to activate a newly released
bundle

● swupd-server tool handles creation of bundles
and feed update streams to a client.

● Project shows no contributors outside of Intel
● Only projects adopting swupd are ClearLinux

and Ostro OS, both Intel projects.

Container-based solutions

● Resin.io
○ Base OS is flexible, Docker-based deltas

● Ubuntu Snappy
○ Base OS is minimal Ubuntu with deltaed

containers
● Project Atomic

○ Base OS managed with OSTree,
Docker-based deltas

● Focus on application and middleware update

Related sessions

● Generic System for Safe Upgrades
○ Tuesday 10:00 http://sched.co/7rrp

● ResinOS
○ Tuesday 15:00 http://sched.co/8PTZ

● OSS Remote update for IoT Devices
○ Tuesday 15:00 http://sched.co/7rrA

● Mender.io BoF
○ Tuesday 18:10 http://sched.co/8PeA

● Continuous Delivery with Yocto (Ostro)
○ Wednesday 10:45 http://sched.co/7rrB

● Software update for IoT
○ Wednesday 14:00 http://sched.co/7rrJ

● Software updates for connected devices
○ Wednesday 15:00 http://sched.co/7rrK

http://sched.co/7rrp
http://sched.co/8PTZ
http://sched.co/7rrA
http://sched.co/8PeA
http://sched.co/7rrB
http://sched.co/7rrJ
http://sched.co/7rrK

Q&A

