
Linux+Zephyr:	IoT	made	easy

IoT	Explodes	Everywhere

❑ “Sensors	and	actuators	embedded	in	physical	objects	and	linked	
through	wired	and	wireless	networks,	often	using	the	same	Internet	
Protocol	(IP)	that	connects	the	Internet”	-	Definition	by	McKinsey.	

❑ Sounds	just	like	embedded	stuff	we’ve	been	doing	for	decades!	So	
what	changed?	

❑ Now	there’s	a	big	market	and	the	world	is	just	‘ready’.	

❑ Unfortunately	there’s	no	standard	(and	probably	will	not	be	one	for	
many	decades),	fragmentation	is	running	amok.

Linux	IoT

❑ Around	for	many	years	and	been	doing	IoT	things	with	it	before	it	had	a	
cool	name.	

❑ All	protocols	have	their	reference	implementation	on	Linux 
(AllJoyn,	MQTT,	Weave,	XMPP,	etc)	

❑ Unfortunately	Linux	has	gotten	quite	large	

❑ Minimum	kernel	for	embedded	target	>	4MB	compressed	

❑ Requires	a	few	hundreds	of	GB	of	flash	for	a	general	purpose	install.	

❑ Not	suitable	for	very	small	devices  

Price	is	everything

❑ If	we	could	run	Linux	on	everything	you	wouldn’t	be	in	this	
presentation!	

❑ Linux	is	secure	(has	years	of	scrutiny	and	professional	security	
people	go	after	every	commit	with	a	fine	tooth	comb).	

❑ Linux	has	the	full	networking	stack	required.	

❑ Linux	has	the	I/O	capabilities	(every	sensor/actuator	driver)	

❑ Unfortunately	you	can’t	run	Linux	on	$0.5	part.

Price	is	everything	(cont)

❑ Run	IoT	on	a	$0.5	part	(ideally,	we	could	do	with	$1)	

❑ This	is	the	sweet-spot	for	many	applications	

❑ Put	a	$50	device	off	premises	and	get	lost	or	stollen,	you	
might	get	a	bit	upset	->	end	up	not	buying	it.	

❑ Put	a	$1	device	off	premises	and	get	lost	or	stollen	->	meh.	

❑ Turns	out	that	we	need	an	OS	for	our	cheap	devices	that	is	
leaner	than	Linux.	

❑ Many	options!

RTOS	selection

❑ A	big	selection	of	choices,	the	big	contenders	

❑ FreeRTOS	

❑ mbedOS	

❑ NuttX	

❑ magenta	(LK)	

❑ None	

❑ Zephyr

FreeRTOS

❑ Dual	License	-	GPLv2	with	linking	exception	or	commercial	

❑ Sparse	API	-	the	most	RTOS	of	old	of	the	most	

❑ No	community	development	for	the	core	(separate)	

❑ 	Preemptive	thread	model,	optional	MPU	protection	

❑ Networking	is	an	add-on	-	no	high	level	frameworks	

❑ Suited	for	people	moving	on	from	bare	metal

mbedOS

❑ Apache	2,	6LoWPan	under	permissive	binary	license	(etc).		

❑ New	mbed	5	RTOS	(CMSIS-RTOS	-	RTX)	

❑ Community	involvement	minimal	(ARM	focused).	

❑ 	MINAR	event	based	API	

❑ Complete	standard	support	(two	different	IP	stacks)	

❑ Tied	to	the	mbed	OS	cloud	API	

❑ Most	easy	to	get	started,	but	not	very	open	source	IMO.

NuttX

❑ BSD	3	clause	

❑ Most	Linux	API	of	them	all.	

❑ Has	a	large	community	but	80%	is	Mr.	Nutt	himself	

❑ Quite	POSIX	compatible	-	easier	to	port	Linux	stuff	

❑ IP	stack	but	not	much	else	IoT	related	

❑ Larger	than	the	other	options,	most	Linux	like.

magenta	(part	of	fuchsia)

❑ MIT	license	

❑ Littlekernel	-	Used	on	Android	bootloaders.	

❑ Just	introduced,	community	is	dubious	

❑ Limited	priority	number,	standard	primitives.	

❑ Networking	stack	-	couldn’t	figure	this	out	:)	

❑ Google	project	-	significant	infant	mortality

None	(is	always	an	option)

❑ N/A	

❑ N/A	

❑ N/A	

❑ N/A	

❑ N/A	

❑ Only	for	the	hardcore

Zephyr

❑ Apache	2	(network	stack	Apache	2)	

❑ Adequate	RTOS	API	(and	nano/micro	option)	

❑ Under	Linux	Foundation	-	true	open	source	

❑ Networking	stack	-	IP	stack	+	IoT	options	(CoAP)	+	BLE	

❑ Linux	kconfig	build	system,	feels	right	at	home.	

❑ Our	selection.

IoT	on	Zephyr.

❑ CoAP,	BLE,	contiki	+	tinydtls	

❑ Can	be	very	small	(smallest	nanokernel	example	at	8K)	

❑ Porting	of	IoT	libraries	possible	

❑ You	can	accomplish	quite	a	lot.	

❑ What	about	Linux?	Where	does	it	fit	in?

IoT	on	Zephyr	(problems)

❑ Security	-	your	IoT	device	has	keys	and	passwords,	how	do	you	
handle	it	being	stolen	by	a	malicious	party?	

❑ Convenience	-	How	easy	can	you	update	the	software	on	the	
devices?	You	might	have	dozen	on	your	premises.	

❑ Future	Proofing	-	Not	enough	room	in	non-volatile	storage	for	
every	IoT	protocol.	What	happens	if	the	company	goes	out	of	
business?	You	have	to	change	all	the	lightbulbs/security	system/etc	
in	such	a	case?	

❑ 	Warring	tribes	-	iPhone	vs	Android	-	it	should	work	with	my	other	
devices	too.

Solution:	Linux	Gateway

❑ Linux	gateway	and	slave	Zephyr	IoT	devices.	

❑ Linux	can	run	all	IoT	protocols	(and	with	enough	RAM	at	the	
same	time)	

❑ Future	proof	-	Linux	is	easily	updated,	since	point	to	do	so.	

❑ Software	on	the	IoT	devices?	Should	it	be	an	IoT	stack?	Do	we	
still	need	to	update	s/w	on	the	IoT	devices?

Intermission:	Cheap	IoT	(1)

❑ Cheap	MCU	with	on	chip	peripherals	

❑ ARM	M	core/PIC/ARM/x86/AVR	

❑ GPIOs	

❑ PWM	

❑ Serial	

❑ I2C	

❑ SPI	

❑ Networking	(IEEE	802.15	or	ZigBee	or	WiFi)…

Intermission:	Cheap	IoT	(2)

❑ Analog	glue	

❑ Sensors	on	I2C/SPI	bus	

❑ Very	price	sensitive	

❑ Speeds	are	usually	low	

❑ Power	budget	is	small	

❑ Less	is	more

What	if	there	was	no	IoT	(1)

❑ Linux	has	full	I/O	capabilities	for	IoT	

❑ Problem	is	that	the	sensors	are	remote	

❑ What	if	we	got	rid	of	the	heavy	weight	IoT	protocols?	

❑ Zephyr	devices	are	simply	peripherals	

❑ S/W	load	on	Zephyr	devices	is	the	same	for	the	same	SoC	no	
matter	what	different	kind	of	sensor/IoT	device	it	is	

❑ Linux	kernel	interfaces	mean	all	the	IoT	application	are	insulated	
from	the	underlying	device	details.

What	if	there	was	no	IoT	(2)

❑ Significant	less	attack	surface	with	security	problems:	

❑ The	devices	only	contain	enough	keys	to	connect	with	the	
gateway	and	have	no	valuable	information	

❑ There	is	much	less	software	on	the	device	

❑ Both	ends	can	be	secured	either	with	pre-programmed	
keys	or	using	a	smart-phone	application	on	install	time.	

❑ The	devices	are	basically	disposable.

Implementation	(bare)

❑ Directly	access	the	SoC	resources	

❑ Registers	

❑ Busses	

❑ +	No	software	besides	networking	and	configuration	

❑ -	Performance	might	be	impacted	

❑ -	More	power	required	(tradeoff)

Implementation	(class	drivers)

❑ Thin	class	layer	

❑ GPIO	class	for	instance	

❑ Classes	for	every	kind	of	peripheral	

❑ -	More	S/W	compared	to	barebones	

❑ +	Better	performance	

❑ +	Less	power	required

Status

❑ Unfortunately	no	demo	yet!	

❑ Test	bed	is	a	beaglebone	and	an	Intel	Galileo	

❑ Kernel	driver	provides	remote	GPIOs	now,	I2C,	SPI	to	come	

❑ Kernel	drivers	uses	a	user-space	helper	to	bridge	to	the	device	
over	BLE.	

❑ Pre-configured	keys	with	DTLS	

❑ WIP,	hope	to	have	a	demo	at	ELC.

Thank	you!

Questions?

