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About the original author, Alan Ott 

● Unfortunately, he is unable to be here at ELCE 
2016.

● Veteran embedded systems and Linux developer
● Linux Architect at SoftIron

– 64-bit ARM servers and data center appliances
– Hardware company, strong on software
– Overdrive 3000, more products in process



  

Physical Memory



  

Single Address Space

● Simple systems have a single address 
space
● Memory and peripherals share

– Memory is mapped to one part
– Peripherals are mapped to another

● All processes and OS share the same
memory space
– No memory protection!
– Processes can stomp one another
– User space can stomp kernel mem!



  

Single Address Space

● CPUs with single address space
● 8086-80206
● ARM Cortex-M
● 8- and 16-bit PIC
● AVR
● SH-1, SH-2
● Most 8- and 16-bit systems



  

x86 Physical Memory Map

● Lots of Legacy
● RAM is split (DOS 

Area and Extended)
● Hardware mapped 

between RAM 
areas.

● High and Extended 
accessed differently



  

Limitations

● Portable C programs expect flat memory
● Multiple memory access methods limit portability

● Management is tricky
● Need to know or detect total RAM
● Need to keep processes separated

● No protection
● Rogue programs can corrupt the

entire system



  

Virtual Memory



  

What is Virtual Memory?

● Virtual Memory is a system that uses an 
address mapping
● Maps virtual address space to

physical address space
– Maps virtual addresses to physical RAM
– Maps virtual addresses to hardware devices

● PCI devices
● GPU RAM
● On-SoC IP blocks



  

What is Virtual Memory?

● Advantages
● Each processes can have a different memory 

mapping
– One process's RAM is inaccessible

(and invisible) to other processes.
● Built-in memory protection

– Kernel RAM is invisible to user space
processes

● Memory can be moved
● Memory can be swapped to disk



  

What is Virtual Memory?

● Advantages (cont)
● Hardware device memory can be mapped into a 

process's address space
– Requires the kernel to perform the mapping

● Physical RAM can be mapped into
multiple processes at once
– Shared memory

● Memory regions can have access
permissions
– Read, write, execute



  

Virtual Memory Details

● Two address spaces
● Physical addresses

– Addresses as used by the hardware
● DMA, peripherals

● Virtual addresses
– Addresses as used by software

● Load/Store instructions (RISC)
● Any instruction accessing memory (CISC)



  

Virtual Memory Details

● Mapping is performed in hardware
● No performance penalty for accessing already-

mapped RAM regions
● Permissions are handled without penalty
● The same CPU instructions are used for

accessing RAM and mapped hardware
● Software, during its normal operation,

will only use virtual addresses.
– Includes kernel and user space



  

Memory-Management Unit

● The memory-management unit (MMU) is the 
hardware responsible for implementing virtual 
memory.
● Sits between the CPU core and memory
● Most often part of the physical CPU itself.

– On ARM, it's part of the licensed core.
● Separate from the RAM controller

– DDR controller is a separate IP block



  

Memory-Management Unit

● MMU (cont)
● Transparently handles all memory accesses from 

Load/Store instructions
– Maps memory accesses using virtual

addresses to system RAM
– Maps accesses using virtual addresses to

memory-mapped peripheral hardware
– Handles permissions
– Generates an exception (page fault)

on an invalid access
● Unmapped address or insufficient

permissions



  

Translation Lookaside Buffer

● The TLB is a list of mappings from virtual to 
physical address space in hardware
● Also holds permission bits

● There are a fixed number of entires
in the TLB, which varies by CPU.

● The TLB is part of the MMU system.



  

Virtual Memory System (hardware)



  

Translation Lookaside Buffer

● TLB is consulted by the MMU when
the CPU accesses a virtual address
● If the virtual address is in the TLB,

the MMU can look up the physical
resource (RAM or hardware).

● If the virtual address is not in the TLB,
the MMU will generate a page fault
exception and interrupt the CPU.
– If the address is in the TLB, but the

permissions are insufficient,
the MMU will generate a page fault.



  

Page Faults

● A page fault is a CPU exception, generated 
when software attempts to use an invalid 
virtual address. There are three cases:
● The virtual address is not mapped for the

process requesting it.
● The processes has insufficient

permissions for the address.
● The virtual address is valid, but

swapped out.
– This is a software condition



  

Kernel Virtual Memory



  

Kernel Virtual Memory

● In Linux, the kernel uses virtual addresses, as 
user space processes do.
● This is not true of all OS's

● Virtual address space is split.
● The upper part is used for the kernel
● The lower part is used for user space

● On 32-bit, the split is at
0xC0000000



  

Virtual Addresses – Linux

● By default, the 
kernel uses the 
top 1GB of virtual 
address space.

● Each user space 
process gets the 
lower 3GB of 
virtual address 
space.



  

Virtual Addresses – Linux

● Kernel address space is the area above 
CONFIG_PAGE_OFFSET.
● For 32-bit, this is configurable at kernel build time.

– The kernel can be given a different amount of
address space as desired

● See CONFIG_VMSPLIT_1G,
CONFIG_VMSPLIT_2G, etc. 

● For 64-bit, the split varies by
architecture, but it's high enough:
– 0x8000000000000000 – ARM64

– 0xffff880000000000 – x86_64



  

Virtual Addresses – Linux

● There are three kinds of virtual addresses in 
Linux.
● The terminology varies, even in the kernel source, 

but the definitions in Linux Device Drivers,
3rd Edition, chapter 15, are somewhat
standard.
– LDD 3 can be downloaded for free at:

https://lwn.net/Kernel/LDD3/ 



  

Virtual Addresses – Linux

● Three kinds of Virtual Addresses
● Kernel:

– Kernel Logical Address
– Kernel Virtual Address

● User space:
– User Virtual Address

➢ LDD3 also talks about Bus Addresses,
which are architecture specific. We
ignore them here.

https://lwn.net/Kernel/LDD3/


  

Kernel Logical Addresses

● Kernel Logical Addresses
● Normal address space of the kernel

– kmalloc()

● Virtual addresses are a fixed offset from
their physical addresses.
– Virt: 0xc0000000 → Phys: 0x00000000

● This makes converting between
physical and virtual addresses easy.



  

Kernel Logical Addresses



  

Kernel Logical Addresses

● Kernel logical addresses can be converted to 
and from physical addresses using the macros:

__pa(x)

__va(x)

● For small-memory systems (below
~1G of RAM) Kernel Logical address
space starts at PAGE_OFFSET
and goes through the end of
physical memory.



  

Kernel Logical Addresses

● Kernel logical address space includes:
● Memory allocated with kmalloc() and

most other allocation methods
● Kernel stacks (per process)

● Kernel logical memory can never
be swapped out!
➢ Note that just because all physical

addresses could have a kernel logical
address, it doesn't mean the kernel is
actually using every byte of memory
on the system.



  

Kernel Logical Addresses

● Kernel Logical Addresses use a fixed mapping 
between physical and virtual address space.

● This means virtually-contiguous regions
are by nature also physically
contiguous.
● This, combined with the inability to be

swapped out, makes them suitable for
DMA transfers.



  

Kernel Logical Addresses

● For 32-bit large-memory systems (more than 
~1GB RAM), not all of the physical RAM can be 
mapped into the kernel's address space.
● Kernel address space is the top 1GB of

virtual address space, by default.
● Further, ~104 MB is reserved at the top

of the kernel's memory space for
non-contiguous allocations
– See vmalloc() described later



  

Kernel Logical Addresses

● Thus, in a large memory situation, only the 
bottom part of physical RAM is mapped 
directly into kernel logical address space.
● Or rather, only the bottom part of physical

RAM has a kernel logical address

● Note that on 64-bit systems, this case
never happens.
● There is always enough kernel

address space to accommodate
all the RAM.



  

Kernel Logical Addresses (Large Mem)



  

Kernel Logical Addresses (Large Mem)



  

Low and High Memory

● Low memory
● Physical memory which has a kernel logical address
● Physically contiguous

● High memory
● Physical memory beyond ~896MB
● Has no logical address
● Not physically contiguous when

used in the kernel
● Only on 32-bit



  

Kernel Virtual Addresses

● Kernel Virtual Addresses are addresses in the 
region above the kernel logical address 
mapping.

● This is also called the vmalloc()
area.



  

Kernel Virtual Addresses

● Kernel Virtual Addresses are used for:
● Non-contiguous memory mappings

– Often for large buffers which could
potentially be too large to find contiguous
memory

– vmalloc()

● Memory-mapped I/O
– Map peripheral devices into kernel

● PCI, SoC IP blocks

– ioremap(), kmap()



  

Kernel Virtual Addresses (Small Mem)



  

Kernel Virtual Addresses

● The important difference is that memory in the 
kernel virtual address area (or vmalloc() 
area) is non-contiguous physically.
● This makes it easier to allocate, especially

for large buffers on small-memory
systems.

● This makes it unsuitable for DMA



  

Kernel Virtual Addresses (Large Mem)



  

Kernel Virtual Addresses

● In a large memory situation, the kernel virtual 
address area is smaller, because there is more 
physical memory.
● An interesting case, where more memory

means less space for kernel virtual
addresses.

● In 64-bit, of course, this doesn't
happen, as PAGE_OFFSET is
large, and there is much more
virtual address space.



  

User Virtual Memory



  

User Virtual Addresses

● User Virtual Addresses represent memory 
used by user space programs.
● This is most of the memory on most systems
● This is where most of the complication is

● User virtual addresses are all
addresses below PAGE_OFFSET.

● Each process has its own mapping
● Threads share a mapping
● Complex behavior with clone(2)



  

User Virtual Addresses

● Unlike kernel logical addresses, which use a 
fixed mapping between virtual and physical 
addresses, user space processes make full use 
of the MMU.
● Only the used portions of RAM are

mapped
● Memory is not contiguous
● Memory may be swapped out
● Memory can be moved



  

User Virtual Addresses

● Since user virtual addresses are not 
guaranteed to be swapped in, or even allocated 
at all, user buffers are not suitable for use by 
the kernel (or for DMA), by default.

● Each process has its own memory map
● struct mm, pointers in task_struct

● At context switch time, the memory
map is changed.
● This is part of the overhead



  

User Virtual Addresses

● Each process will 
have its own 
mapping for user 
virtual addresses

● The mapping is 
changed during 
context switch



  

The Memory Management Unit



  

The MMU

● The Memory Management Unit (MMU) is a 
hardware component which manages virtual 
address mappings
● Maps virtual addresses to physical

addresses

● The MMU operates on basic units of
memory called pages.
● Page size varies by architecture
● Some architectures have

configurable page sizes



  

The MMU

● Common page sizes:
● ARM – 4k
● ARM64 – 4k or 64k
● MIPS – widely configurable
● x86 – 4k

➢ Architectures which are configurable
are configured at kernel build time.



  

The MMU

● Terminology
● A page is a unit of memory sized and aligned at the 

page size.
● A page frame, or frame, refers to a page-

sized and page-aligned physical memory
block.
➢ A page is somewhat abstract, where a

frame is concrete
➢ In the kernel, the abbreviation pfn, for

page frame number, is often used to
refer to refer to physical page frames



  

The MMU

● The MMU operates on pages
● The MMU maps physical frames to virtual 

addresses.
● A memory map for a process will

contain many mappings
● A mapping often covers multiple pages
● The TLB holds each mapping

– Virtual address
– Physical address
– Permissions



  

Virtual Memory System (hardware)



  

Page Faults

● When a process accesses a region of memory 
that is not mapped, the MMU will generate a 
page fault exception.
● The kernel handles page fault exceptions

regularly as part of its memory
management design.
– TLB is often smaller than the total number

of maps for a process.
– Page faults at context switch time
– Lazy allocation



  

Basic TLB Mappings



  

Basic TLB Mappings



  

Basic TLB Mappings



  

Basic TLB Mappings



  

Basic TLB Mappings



  

Basic TLB Mappings

● Mappings to virtually contiguous regions do not 
have to be physically contiguous.
– This makes memory easier to allocate.

– Almost all user space code does not need
physically contiguous memory.



  

Multiple Processes

● Each process has its own set of mappings.
● The same virtual addresses in two different 

processes will likely be used to map different 
physical addresses.



  

Multiple Processes – Process 1



  

Multiple Processes – Process 2



  

Shared Memory

● Shared memory is easily implemented with an 
MMU.
– Simply map the same physical frame into

two different processes.

– The virtual addresses need not be the
same.

● If pointers to values inside a shared
memory region are used, it might be
important for them to have the same
virtual addresses, though.



  

Shared Memory – Process 1



  

Shared Memory – Process 2



  

Shared Memory

● Note in the previous example, the shared 
memory region was mapped to different 
virtual addresses in each process.

● The mmap() system call allows the
user space process to request a
specific virtual address to map the
shared memory region.
● The kernel may not be able to grant

a mapping at this address,
causing mmap() to return failure.



  

Lazy Allocation

● The kernel will not allocate pages requested by 
a process immediately.
● The kernel will wait until those pages are

actually used.
● This is called lazy allocation and is a

performance optimization.
– For memory that gets allocated but

doesn't get used, allocation never has
to happen!



  

Lazy Allocation

● Process
● When memory is requested, the kernel simply 

creates a record of the request in its page tables 
and then returns (quickly) to the process,
without updating the TLB.

● When that newly-allocated memory is
touched, the CPU will generate a page
fault, because the CPU doesn't know
about the mapping.



  

Lazy Allocation

● Process (cont)
● In the page fault handler, the kernel uses its page 

tables to determine that the mapping is valid (from 
the kernel's point of view) yet unmapped
in the TLB.

● The kernel will allocate a physical page
frame and update the TLB with the new
mapping.

● The kernel returns from the
exception handler and the user
space program can resume.



  

Lazy Allocation

● In a lazy allocation case, the user space 
program never is aware that the page fault 
happened.
● The page fault can only be detected in the

time that was lost to handle it.

● For processes that are time-sensitive,
pages can be pre-faulted, or simply
touched, at the start of execution.
● Also see mlock() and
mlockall()in this case.



  

Page Tables

● The entries in the TLB are a limited resource.
● Far more mappings can be made than can exist 

in the TLB at one time.
● The kernel must keep track of all of the

mappings all of the time.
● The kernel stores all this information

in the page tables.
● See struct_mm and
vm_area_struct



  

Page Tables

● Since the TLB can only hold a limited subset of 
the total mappings for a process, some valid 
mappings will not have TLB entries.
● When these addresses are touched, the

CPU will generate a page fault, because
the CPU has no knowledge of the
mapping; only the kernel does.



  

Page Tables

● When the page fault handler executes in this 
case, it will:
● Find the appropriate mapping for the offending

address in the kernel's page tables
● Select and remove an existing TLB entry
● Create a TLB entry for the page

containing the address
● Return to the user space process

➢ Observe the similarities to lazy
allocation handling



  

Swapping

● When memory utilization is high, the kernel 
may swap some frames to disk to free up RAM.
● Having an MMU makes this possible.

● The kernel can copy a frame to disk
and remove its TLB entry.

● The frame can be re-used by
another process



  

Swapping

● When the frame is needed again, the CPU will 
generate a page fault (because the address is 
not in the TLB).

● The kernel can then, at page fault time:
● Put the process to sleep
● Copy the frame from the disk into an

unused frame in RAM
● Fix the page table entry
● Wake the process



  

Swapping

● Note that when the page is restored to RAM, it's 
not necessarily restored to the same physical 
frame where it originally was located.

● The MMU will use the same virtual
address though, so the user space
program will not know the difference
➢This is why user space memory

cannot typically be used for DMA.



  

Swapping Out



  

Swapping Out



  

Swapping Out



  

Swapping Out



  

Swapping In



  

Swapping In



  

Swapping In



  

User Space



  

User Space

● There are several ways to allocate memory 
from user space
● Ignoring the familiar *alloc() functions, which

sit on top of platform methods.

● mmap() can be used directly to
allocate and map pages.

● brk()/sbrk() can be used to
increase the heap size.



  

mmap()

● mmap() is the standard way to allocate large 
amounts of memory from user space
● While mmap() is often used for files, the 
MAP_ANONYMOUS flag causes mmap()
to allocate normal memory for the
process.

● The MAP_SHARED flag can make the
allocated pages sharable with other
processes.



  

brk()/sbrk()

● brk() sets the top of the program break.
● The man page says this is the top of the data 

segment, but inspection of kernel/sys.c shows
it separate from the data segment.

● This in effect increases the size of the
heap.

● sbrk() increases the program
break (rather than setting it
directly).



  

brk()/sbrk()

● Lazy Allocation
● See mm/mmap.c for do_brk()
● do_brk() is implemented similar to
mmap().
– Modify the page tables for the new area
– Wait for the page fault

➢ Optionally, do_brk() can pre-fault the
new area and allocate it. See mlock(2)
to control this behavior.



  

High-Level Implementation

● The familiar C allocators malloc() and 
calloc() will use either brk() or mmap() 
depending on the requested allocation size.
● Small allocations use brk()
● Large allocations use mmap()
● See mallopt(3) and the
M_MMAP_THRESHOLD parameter
to control this behavior.



  

Stack

● Stack Expansion
● If a process accesses memory beyond its stack, the 

CPU will trigger a page fault.
● The page fault handler detects the

address is just beyond the stack, and
allocates a new page to extend the stack.
– The new page will not be physically

contiguous with the rest of the stack.

● See __do_page_fault() in
arch/arm/mm/fault.c



  

Summary

● Physical Memory
● Virtual Memory
● Kernel addressing
● User space addressing
● Swapping
● User space allocation


