
Groking the Linux SPI Subsystem
FOSDEM 2017

Matt Porter

Obligatory geek
reference
deobfuscation

grok (/gräk/)

verb

to understand intuitively or by empathy, to

establish rapport with.

Overview

● What is SPI?
● SPI Fundamentals
● Linux SPI Concepts
● Linux SPI Use cases

○ Add a device
○ Protocol drivers
○ Controller drivers
○ Userspace drivers

● Linux SPI Performance
● Linux SPI Future

What is SPI?

What is SPI?

● Serial Peripheral Interface
● Motorola
● de facto standard
● master-slave bus
● 4 wire bus

○ except when it’s not
● no maximum clock speed
● http://wikipedia.org/wiki/S

erial_Peripheral_Interface
● “A glorified shift register”

http://wikipedia.org/wiki/Serial_Peripheral_Interface
http://wikipedia.org/wiki/Serial_Peripheral_Interface
http://wikipedia.org/wiki/Serial_Peripheral_Interface

Common uses of SPI

● Flash memory
● ADCs
● Sensors

○ thermocouples, other high data rate devices
● LCD controllers
● Chromium Embedded Controller

SPI fundamentals

SPI Signals

● MOSI - Master Output Slave Input

○ SIMO, SDI, DI, SDA

● MISO - Master Input Slave Output

○ SOMI, SDO, DO, SDA

● SCLK - Serial Clock (Master output)

○ SCK, CLK, SCL

● S̅S̅ - Slave Select (Master output)

● CSn, EN, ENB

SPI Master and Slave

Basic SPI Timing Diagram

SPI Modes

● Modes are composed of two clock characteristics
● CPOL - clock polarity

○ 0 = clock idle state low
○ 1 = clock idle state high

● CPHA - clock phase
○ 0 = data latched falling, output rising
○ 1 = data latched rising, output falling

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

SPI Mode Timing - CPOL 0

SPI Mode Timing - CPOL 1

SPI can be more complicated

● Multiple SPI Slaves
○ One chip select for each slave

● Daisy Chaining
○ Inputs to Outputs
○ Chip Selects

● Dual or Quad SPI (or more lanes)
○ Implemented in high speed SPI Flash devices
○ Instead of one MISO, have N MISOs
○ N times bandwidth of traditional SPI

● 3 Wire (Microwire) SPI
○ Combined MISO/MOSI signal operates in half duplex

Multiple SPI Slaves

SPI Mode Timing - Multiple Slaves

Linux SPI concepts

Linux SPI drivers

● Controller and Protocol drivers only (so far)
○ Controller drivers support the SPI master controller

■ Drive hardware to control clock and chip selects,
shift data bits on/off wire and configure basic SPI
characteristics like clock frequency and mode.

■ e.g. spi-bcm2835aux.c
○ Protocol drivers support the SPI slave specific

functionality
■ Based on messages and transfers
■ Relies on controller driver to program SPI master

hardware.
■ e.g. MCP3008 ADC

Linux SPI communication

● Communication is broken up into transfers and messages
● Transfers

○ Defines a single operation between master and slave.
○ tx/rx buffer pointers
○ optional chip select behavior after operation
○ optional delay after operation

● Messages
○ Atomic sequence of transfers
○ Fundamental argument to all SPI subsystem read/write

APIs.

SPI Messages and Transfers

Linux SPI use cases

Exploring via use cases

● I want to hook up a SPI device on my board that already
has a protocol driver in the kernel.

● I want to write a kernel protocol driver to control my SPI
slave.

● I want to write a kernel controller driver to drive my SPI
master.

● I want to write a userspace protocol driver to control my
SPI slave.

Adding a SPI device to a system

● Know the characteristics of your slave device!
○ Learn to read datasheets

● Three methods
○ Device Tree

■ Ubiquitous
○ Board File

■ Deprecated
○ ACPI

■ Mostly x86

Reading datasheets for SPI details - ST7735

Reading datasheets for SPI details - ST7735

Reading datasheets for SPI details - MCP3008

Reading datasheets for SPI details - MCP3008

MCP3008 via DT

● mcp3008 DT binding

MCP3008 via DT

● DTS fragment

MCP3008 via board file

● C code fragment

MCP3008 via ACPI

●

Protocol Driver

● Standard LInux driver model
● Instantiate a struct spi_driver

○ .driver =
■ .name = “my_protocol”,
■ .pm = &my_protocol_pm_ops,

○ .probe = my_protocol_probe
○ .remove = my_protocol_remove

● Once it probes, SPI I/O may take place using kernel APIs

Kernel APIs

● spi_async()
○ asynchronous message request
○ callback executed upon message complete
○ can be issued in any context

● spi_sync()
○ synchronous message request
○ may only be issued in a context that can sleep (i.e. not

in IRQ context)
○ wrapper around spi_async()

● spi_write()/spi_read()
○ helper functions wrapping spi_sync()

Kernel APIs

● spi_read_flash()
○ Optimized call for SPI flash commands
○ Supports controllers that translate MMIO accesses into

standard SPI flash commands
● spi_message_init()

○ Initialize empty message
● spi_message_add_tail()

○ Add transfers to the message’s transfer list

Controller Driver
● Standard LInux driver model
● Allocate a controller

○ spi_alloc_master()
● Set controller methods

○ setup() - configure SPI parameters
○ cleanup() - prepare for driver removal
○ prepare_transfer_hardware() - msg arriving soon
○ unprepare_transfer_hardware() - no msgs pending
○ transfer_one_message() - dispatch one msg and

queue
○ transfer_one() - dispatch one transfer and queue

● Register a controller
○ spi_register_master()

Userspace Driver

● spidev
● Slave devices bound to the spidev driver yield:

○ /sys/class/spidev/spidev[bus].[cs]
○ /dev/spidev[bus].[cs]

● Character device
○ open()/close()
○ read()/write() are half duplex
○ ioctl()

■ SPI_IOC_MESSAGE - raw messages, full duplex
and chip select control

■ SPI_IOC_[RD|WR]_* - set SPI parameters

Userspace Help

● Docs
○ Documentation/spi/spidev

● Examples
○ tools/spi/spidev_fdx.c
○ tools/spi/spidev_test.c

● Helper libaries
○ https://github.com/jackmitch/libsoc
○ https://github.com/doceme/py-spidev

https://github.com/jackmitch/libsoc
https://github.com/jackmitch/libsoc
https://github.com/doceme/py-spidev
https://github.com/doceme/py-spidev

Linux SPI
Performance

Performance considerations

● Be aware of underlying DMA engine or SPI controller
driver behavior.
○ e.g. OMAP McSPI hardcoded to PIO up to 160 byte

transfer
● sync versus async API behavior

○ async may be suitable for higher bandwidth where
latency is not a concern (some network drivers)

○ sync will attempt to execute in caller context (as of 4.x
kernel) avoiding sleep and reducing latency

Performance considerations

● Use cs_change wisely. Note the details from
include/linux/spi/spi.h:

Performance tools

● Debug/visibility tools critical to any hardware focused work
● Logic analyzer

○ http://elinux.org/Logic_Analyzers
○ https://sigrok.org/wiki/Supported_hardware#Logic_anal

yzers
● drivers/spi/spi-loopback-test
● SPI subsystem statistics

○ /sys/class/spi_master/spiB/spiB.C/statistics
■ messages, transfers, errors, timedout
■ spi_sync, spi_sync_immediate, spi_async
■ transfer_bytes_histo_*

http://elinux.org/Logic_Analyzers
http://elinux.org/Logic_Analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers

Linux SPI Future

Slave Support

● Hard real time issues on Linux due to full duplex nature of
SPI.

● Useful if considering limited use cases
○ Pre-existing responses
○ Commands sent to slave

● RFC v2 patch series
○ https://lkml.org/lkml/2016/9/12/1065

● Registering a controller works just like a master
○ spi_alloc_slave()

https://lkml.org/lkml/2016/9/12/1065
https://lkml.org/lkml/2016/9/12/1065

Slave Support

● /sys/class/spi_slave/spiB/slave for each slave controller
● slave protocol drivers can be bound via sysfs

○ echo slave-foo > /sys/class/spi_slave/spi3/slave
● Two slave protocol drivers provided as an example

○ spi-slave-time (provides latest uptime to master)
○ spi-slave-system-control (power off, reboot, halt

system)

Questions?

