
Vitaly Wool, Konsulko Group

Building a low-key RISC-V 
Linux XIP system



About me

q Has been with embedded Linux 
since 2003

q Worked for MontaVista

q Currently living in Sweden 
(Skåne)

q Staff Engineer at Konsulko Group

q Managing Director at Konsulko
AB



About this presentation

q A few words on RISC-V

q A few words on XIP

q Linux XIP on RISC-V: why and how

q Future work on RISC-V XIP

q Demo (BeagleV)

q Conclusions



RISC-V



RISC-V

q open source hardware Instruction Set Architecture (ISA)
§ RISC (reduced instruction set)

§ Royalty free for any chip manufacturer

§ Developed by UC Berkeley
§ V postfix because it’s fifth UC Berkeley RISC design

§ Standard maintained by non-profit RISC-V foundation

q It’s not a CPU implementation nor a company
§ But you can implement a CPU using RISC-V ISA



RISC-V vs ARM

RISC-V ARM

RISC instruction set (load/store) RISC instruction set (load/store)

Can be 32-, 64- and 128-bit Can be 32- and 64-bit

Open and royalty free ISA Proprietary, licensed

Relatively new, community is 
emerging

Leading architecture, well-established 
community

Linux XIP supported Linux XIP supported

q …in a nutshell



XIP



XIP: execute in place

q Code executed directly from persistent storage
§ Typically NOR flash

§ QSPI

q XIP kernel
§ Option selected at compile time

q XIP userspace
§ Requires a special filesystem

§ Cramfs (legacy), AXFS



Kernel XIP

Bootloader Kernel 

Application FS A

Data

QSPI

NAND

Traditional XIP design (userspace can be anywhere)



Kernel/Userspace XIP

Bootloader Kernel 

Application FS

Data

QSPI

NAND

Possibly more expensive design but we save RAM



XIP advantages

q Less RAM needed
§ Usually up to 10x smaller RAM footprint
§ Sometimes no RAM at all is needed

q Lower idle power consumption
§ May be crucial for IoT running on battery

q Shorter boot time
§ No copy on boot

q Faster execution
§ QSPI flash



XIP obstacles

q You can’t write to flash and execute from it at the same time

q However, you write to flash using special tricks
§ Code copied/executed from RAM

§ No other code may be executed during that time

q XIP requires more space on flash storage
§ At least kernel code can not be compressed

q All addresses are defined at compile time
§ Which may be a security compromise



XIP on RISC-V



Why do XIP on RISC-V?

q QSPI flash in most designs
§ Medium to XIP from is likely to be there

q Many cheaper RISC-V boards target IoT
§ XIP reduces power consumption

q RISC-V SBI firmware allows to bypass u-boot completely
§ Works for an XIP kernel but not for a usual kernel
§ Significantly reduces boot-up time

q Many RISC-V boards have small RAM
§ XIP allows to run Linux on these 



XIP on RISC-V : current status

q XIP support for RISC-V is in the mainline!
§ Only 64-bit RISC-V designs are supported now
§ Since 5.13
§ Created by the author of this presentation with some great help 

from Alexander Ghiti

q Just the second platform to get XIP support
§ ARM (32-bit) is the other one

q Developed and tested mostly on PolarFire Icicle Kit

q Verified to work on SiFive and Beagle-V



XIP on RISC-V : work to be done

q Add support for MMU-less boards
§ Boards like Kendryte K210 are the main target for XIP

q Add .data/.sdata section compression
§ Will leave more space for XIP userspace

q Add support for 32-bit RISC-V designs

q Optimize address translations
§ Branching on “NOR flash vs RAM” slows down things

q Test on more boards J



BeagleV demo



BeagleV board

q Raspberry Pi like board with a 64-bit RISC-V 
CPU

q Designed by BeagleBoard® Foundation

q Incorporates SiFive U74 2-core CPU
§ Roughly on par with ARM Cortex-A55

q 8GB LPDDR4 RAM

q 32 MB QSPI NOR flash

q uSD, HDMI, Ethernet, audio, and USB ports

q …and more



BeagleV software

q Complete Linux build HOWTO: https://bootlin.com/blog/buildroot-
beagle-v/
§ Thanks Bootlin!

q This build is using 5.10 kernel which doesn’t support XIP on RISC-V
§ I was using earlier version of my RISC-V XIP patch (available on 

demand of course)

q Some configuration changes are to be made too
§ STRICT_RWX must be turned off

§ Memory model should be SPARSEMEM

§ QSPI flash is at 0x20000000, not 0x21000000

https://bootlin.com/blog/buildroot-beagle-v/


Beagle-V demo



Conclusions

q XIP is not a yesterday’s technology

q XIP goes very well with what RISC-V designs have to offer

q Important extra work is to be done to get the best out of 
XIP/RISC-V combo

q RISC-V designs also have to mature to get the best of that 
combo



Questions?

Vitaly.Wool@konsulko.com


