
Contemporary
Device Tree

Matt Porter
Konsulko

mporter@konsulko.com

SCALE 13x

Overview

● History of Device Tree (DT)
● Linux kernel use of DT
● Device Tree Basics
● Device Tree Examples
● Modifying Device Trees
● Dynamic Device Tree Overlays

History of Device Tree (DT)

● Sun Microsystems - Open Boot / Open
Firmware (1988)
○ Used in SPARC systems
○ Uses DT to describe hardware

● IEEE-1275 formalized specification (1994)
○ Documents DT

● Apple adopts Open Firmware on Power Mac
7200 (1995) using DT

● Common Hardware Reference Platform
(CHRP) specifies DT (1995)

● ePAPR specifies DT (2008)

DT in the Linux kernel

● SPARC
○ All systems pass DT so it’s supported for a long time

in the kernel
● PowerPC

○ PowerMacs also drove support of DT in the kernel
○ Major reorg in 2005 merging 32-bit/64-bit required all

platforms to use DT
● x86

○ Yes, really. CE4100 Falconfalls uses DT

DT in the Linux kernel

● ARM
○ Linus’ ultimatum to ARM community (2011)

■ http://lists.infradead.org/pipermail/linux-arm-
kernel/2011-April/048543.html

○ All new platforms must use DT to describe hardware
● MIPS

○ Fall out from Linus’ ultimatum, Ralf Baechle begins
MIPS conversion to DT
■ http://www.linux-mips.org/archives/linux-

mips/2011-06/msg00059.html
● Microblaze

○ Using DT in 2008, driven by flexible FPGA I/O

http://lists.infradead.org/pipermail/linux-arm-kernel/2011-April/048543.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-April/048543.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2011-April/048543.html
http://www.linux-mips.org/archives/linux-mips/2011-06/msg00059.html
http://www.linux-mips.org/archives/linux-mips/2011-06/msg00059.html
http://www.linux-mips.org/archives/linux-mips/2011-06/msg00059.html

Defining Device Tree

● ePAPR defines DT
○ https://www.power.org/documentation/epapr-

version-1-1/
■ a concept called a device tree to describe

system hardware.
■ A device tree is a tree data structure with

nodes that decribe the physical devices in a
system.

■ [a] device tree describes device information
in the system that cannot be dynamically
detected by a client.

https://www.power.org/documentation/epapr-version-1-1/
https://www.power.org/documentation/epapr-version-1-1/
https://www.power.org/documentation/epapr-version-1-1/

Device Tree Basics

● Nodes
○ Groupings of properties and child nodes

● Properties
○ Key-Value Pairs

■ Text strings “my string”
■ Cells (32-bit) <0xdeadbeef 11 0xf00d>
■ Binary data [0x01 0x02 0x03 0x04]
■ mixed data, concatenate with a comma

● “my string”, <0xdeadbeef>, [0x04], “your string”

● Phandles
○ Reference to another node

Device Tree Source Format
/ {
 node1@0 {
 a-string-property = "A string";
 a-string-list-property = "first string", "second string";
 a-byte-data-property = [0x01 0x23 0x34 0x56];
 child-node1@0 {
 first-child-property;
 second-child-property = <1>;
 third-child-property = <&node2>;
 a-string-property = "Hello, world";
 };
 child-node2@1 {
 };
 };
 node2: node2@1 {
 an-empty-property;
 a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
 child-node1 {
 };
 };
};

String, list, and binary
property values

Node name and unit address

Phandle

Label

Device Tree Node Example
uart0: serial@44e09000 {

 compatible = "ti,omap3-uart";

 ti,hwmods = "uart1";

 clock-frequency = <48000000>;

 reg = <0x44e09000 0x2000>;

 interrupts = <72>;

 status = "disabled";

 dmas = <&edma 26>, <&edma 27>;
 dma-names = "tx", "rx";
};

An identifier for this hardware which allows the operating system to
match a compatible driver to the peripheral.

Unit address is the memory mapped I/O address of this UART

Vendor specific properties are prefixed with a vendor ID

Input clock frequency for this UART

Base address of length of the memory mapped I/O

Interrupt number

Device is not enabled

DMA engine properties, phandle to DMA deivice node and channels used

arch/arm/boot/dts/am33xx.dtsi

Device Tree Driver Example

#if defined(CONFIG_OF)
static const struct of_device_id omap_serial_of_match[] = {
 { .compatible = "ti,omap2-uart" },
 { .compatible = "ti,omap3-uart" },
 { .compatible = "ti,omap4-uart" },
 {},
};
MODULE_DEVICE_TABLE(of, omap_serial_of_match);
#endif

static struct platform_driver serial_omap_driver = {
 .probe = serial_omap_probe,
 .remove = serial_omap_remove,
 .driver = {
 .name = DRIVER_NAME,
 .pm = &serial_omap_dev_pm_ops,
 .of_match_table = of_match_ptr(omap_serial_of_match),
 },
};

Compatible strings this driver matches

Probe will be run when a matching
compatible string is found

drivers/tty/serial/omap-serial.c

Device Tree Platform Example
&am33xx_pinmux {
...
 uart0_pins: pinmux_uart0_pins {
 pinctrl-single,pins = <
 0x170 (PIN_INPUT_PULLUP | MUX_MODE0)
 0x174 (PIN_OUTPUT_PULLDOWN | MUX_MODE0)
 >;
 };
…
};

...

&uart0 {
 pinctrl-names = "default";
 pinctrl-0 = <&uart0_pins>;

 status = "okay";
};

Marking this device enabled instantiates the device in the kernel

Pinctrl properties contain pin mux settings that are
referenced here via phandle

Child node contains platform specific pin mux settings for UART0

arch/arm/boot/dts/am335x-bone-common.dtsi

Device Tree Bindings

● ePAPR defines as
○ ...requirements, known as bindings, for how

specific types and classes of devices are
represented in the device tree.

● Maintained in Linux kernel
○ Documentation/device-tree/bindings/*
○ Follow standards and conventions established in

IEEE1275 and ePAPR
● Each type and class of device has a DT

binding describing all of the valid properties
and their behavior

Device Tree Binding Example
OMAP UART controller

Required properties:
- compatible : should be "ti,omap2-uart" for OMAP2 controllers
- compatible : should be "ti,omap3-uart" for OMAP3 controllers
- compatible : should be "ti,omap4-uart" for OMAP4 controllers
- ti,hwmods : Must be "uart<n>", n being the instance number (1-based)

Optional properties:
- clock-frequency : frequency of the clock input to the UART

Documentation/devicetree/bindings/serial/omap_serial.txt

Whoa, wait, this is a terrible example. This
binding doesn’t show the reg, interrupt, or
dmas properties that are clearly used in the
working dtsi source file’s UART node.

FIXED Device Tree Binding Example
OMAP UART controller

Required properties:
- compatible : should be "ti,omap2-uart" for OMAP2 controllers
- compatible : should be "ti,omap3-uart" for OMAP3 controllers
- compatible : should be "ti,omap4-uart" for OMAP4 controllers
- reg : address and length of the register space
- interrupts: Should contain the uart interrupt number
- ti,hwmods : Must be "uart<n>", n being the instance number (1-based)

Optional properties:
- clock-frequency : frequency of the clock input to the UART
- dmas: DMA specifier, consisting of a phandle to the DMA controller
 node and a DMA channel number.
- dma-names: “rx” for RX channel, “tx” for TX channel.

Example:
uart0: serial@44e09000 {
 compatible = "ti,omap3-uart";
 ti,hwmods = "uart1";
…
};

Managing Device Tree Source (DTS)

● DTS files found in arch/foo/boot/dts/ on
ARM, MIPS, PowerPC, and MicroBlaze

● A DTS file is compiled into a Device Tree
Blob (DTB)
○ The resulting DTB is passed to the kernel at boot
○ All devices are created using the contents of the

DTB.
● DTS files may include other files

BeagleBone White/Black DTS/DTSI

am33xx.dtsi

am335x-bone-common.dtsi

am335x-evm.dtsam335x-bone.dtsam335x-bone-black.dts

Compiling DTBs

● The Device Tree Compiler (dtc) is used to
compile DTS -> DTB
○ Found in scripts/dtc

● Invoking dtc from the kernel tree
○ make dtbs
○ will generate DTBs for each DTS in

arch/foo/boot/dts/*
○ Runs C preprocessor on source files

● Invoking dtc directly
○ dtc -I dts -O dtb -o myboard.dtb myboard.dts

Adding an I2C device to a board
&am335x_pinmux {
...
 i2c1_pins: pinmux_i2c1_pins {
 pinctrl-single,pins = <
 0x158 (PIN_INPUT_PULLUP | MUX_MODE2)
 0x15c (PIN_INPUT_PULLUP | MUX_MODE2)
 >;
 };
...
};

…

&i2c1 {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <400000>;
 status = "okay";

 at24@50 {
 compatible = "at,24c256";
 pagesize = <64>;
 reg = <0x50>;
 };
};

Add this i2c1 pins node which defines pinmux settings for BeagleBlack P9-
18 and P9-17 to be muxed as I2C1_SDA and I2C1_SCL, respectively. The
property values are gathered from a combination of the board manual, SoC
datasheet, and the pinctrl single binding.

The i2c1 device node included from the am33xx.dtsi is overlayed with board
specific properties. The pinctrl properties reference the above pinmux
configuration for the I2C pins and the clock frequency is set according to the
device capabilities on the I2C bus. Finally, the i2c controller is enabled. Note
that the i2c1 device node defaults to disabled in am33xx.dtsi.

The at24@50 child node instantiates a 24c256 I2C serial eeprom on the
parent I2C bus at address 0x50.

Modifying arch/arm/boot/dts/am335x-boneblack.dts

Dynamic Device Trees

● Power architecture has had
CONFIG_OF_DYNAMIC
○ Destructive changes to the live device tree

● Capebus introduced in 2012, a kernel
framework to dynamically modify the DT
based on pluggable hardware
○ Driven by Beaglebone’s standardized expansion

capes (Capebus shipped in the Beaglebone 3.8
kernel) .

● Capebus discussions made way upstream
for the staged introduction of dynamic DT
overlays.

Dynamic DT Overlays

● Part of the kernel since 3.19
● Introduces the concept of a DT fragment

○ A DT fragment is a DTB which contains symbols that
can only be resolved at runtime against the live tree.

● Allows a user to insert a DT fragment into
the live tree at runtime and activate it
○ The inserted fragment becomes part of the tree in

the same manner as if it were compiled into the DTB
and passed at boot time.

● A configfs interface is used to specify DT
fragments to be applied to the live tree

DT Fragment Format
● Use overlay enabled dtc from https://github.com/pantoniou/dtc
● Borrowing Pantelis Antoniou’s example:
/* qux.dts */
/dts-v1/;

/plugin/;

/ {

 BAZ: baz { };

qux = <&BAZ>;

 quux = <&FOO>;
};

The dtc compiler will assign a phandle value of 0x00000001 to the baz node.

The dtc compiler will resolve &BAZ accordingly for a value of <0x00000001>.

The dtc compiler will mark property quux as requiring a fixup at runtime to resolve
&FOO.

Notifies dtc that this is a DT fragment.

https://github.com/pantoniou/dtc

DT Fragment Format Analysis

● Compile it
$ dtc -O dtb -o qux.dtbo -b 0 -@ qux.dts

● Dump it
$ fdtdump qux.dtbo
/ {
qux = <0x00000001>;
quux = <0xdeadbeef>;
baz {
linux,phandle = <0x00000001>;
phandle = <0x00000001>;
};
__symbols__ { BAZ = "/baz"; };
__fixups__ { FOO = "/:quux:0"; };
__local_fixups__ { qux = <0>; };
};

Add I2C device: DT Overlay Version
/dts-v1/;
/plugin/;

/ {
 fragment@0 {
 target = <&am3353x_pinmux>;
 __overlay__ {
 i2c1_pins: pinmux_i2c1_pins {
 pinctrl-single,pins = <
 0x158 0x72
 0x15c 0x72
 >;
 };
 };
 };

 fragment@1 {
 target = <&i2c1>;
 __overlay__ {
 pinctrl-names = "default";
 pinctrl-0 = <&i2c1_pins>;
 clock-frequency = <400000>;
 status = "okay";

 at24@50 {
 compatible = "at,24c256";
 pagesize = <64>;
 reg = <0x50>;
 };
 };
 };
};

at24-i2c1.dts

Add I2C device: Build and Load
Overlay

$ dtc -O dtb -o at24-i2c1.dtbo -b 0 -@ at24-i2c1.dts
$ mkdir /config/device-tree/overlays/a24-i2c1

$ cp at24-i2c1.dtbo /config/device-tree/overlays/at24-i2c1/dtbo

$ rmdir /config/device-tree/overlays/at24-i2c1

Loads and activates the DT fragment, enabling
the I2C1 controller and instantiating the 24C256
I2C EEPROM

Deactivates and removes the DT fragment,
disabling the I2C1 controller and the 24C256 I2C
EEPROM

