
Tales from the Crypt: 

Implementing Secure Boot and Disk Encryption on Tegra Platforms

Tim Orling, Konsulko Group
#ossummit @moto_timo



#ossummit

Konsulko Group

• Services company specializing in Embedded Linux and 
Open Source Software

• Hardware/software build, design, development, and 
training services

• Based in San Jose, CA with an engineering presence 
worldwide

• https://konsulko.com/

https://konsulko.com/


#ossummit

Abstract

“Secure boot” is not one size fits all, but rather there are different implementations on 
different platforms. For Tegra platforms, secure boot involves a one-time only burning of 
keys into the on-device fuses. We’ll share the lessons learned from turning a board into a 
lovely paperweight as well as the reliable approach we used to confidently secure boot into 
the vendor’s Ubuntu based OS before creating our own Yocto Project built OS.

For disk encryption with LUKS and dm-crypt, we extended our approach of testing the 
vendor’s OS before moving on to creating our own. The added complexity of unique 
passphrases derived from disk UUIDs and per-device HW-derived keys was an interesting 
challenge. We attempted to stay as close to the vendor's tools (luks-srv and luks-srv-app) 
and design as we could, to hopefully future proof the implementation for newer releases of 
Linux for Tegra. Extending to A/B flashing for OTA updates (e.g. rauc or mender) added 
additional challenges, especially when trying to generalize the approach for the meta-tegra 
community. The end solution must address the bootloader, initramfs, kernel command 
line, /etc/crypttab, /etc/fstab and more. Add in the complexity of the partition table layout 
and flashing tools for Tegra platforms and you are in for a wild ride.



#ossummit

Agenda

• Secure Boot
– Caveats
– NVidia Secure Boot 

Implementation Primer
– Fuses on Tegra Platforms
– A Lovely Paperweight
– secureboot-tegra
– meta-tegra

• Disk Encryption
– NVidia’s Implementation

– Dead End (It seemed like a good idea)

– Another “Good” Idea
– Yocto Project/OpenEmbedded 

Friendlier Approach
– tegra-test-distro
– eks.img
– A/B OTA Updates

• Future Work
– Jetpack 5.0.2+ (OP-TEE, UEFI 

and 5.10.y Kernel)
– tegra-demo-distro



Secure Boot



#ossummit

Secure Boot: NVidia Implementation Primer

• Keys (or hashes of keys) are burned into fuses

• Keys stored on “disk” in Encrypted Key Blob (EKB)

• Initial boot with Trusted Operating System (TOS)

• Client Applications in initrd can retrieve keys from Trusted 
Applications (hwkey-agent and luks-srv)

• Multiple levels possible:
– Public Key Cryptography (PKC)

– + Secure Boot Key (SBK) => “SBKPKC”

– + user_key (EKB and eks.img)



#ossummit

Secure Boot: Caveats

• Secure Boot is not one-size fits all

– Each platform can have different implementations and nuances

– This work specifically targeted the Jetson AGX Xavier platform 
(T194)

• Developed on:

– Jetpack 4.6.1/L4T 32.7.1

– Yocto Project ‘dunfell’ (3.1.y) release

• Forward ported to:

– Jetpack 4.6.2/L4T 32.7.2

– Yocto Project ‘kirkstone’ (4.0.y) release



#ossummit

Secure Boot: Fuses on Tegra Platforms

Software and configuration fuses related to Secure Boot for Jetson Xavier NX series
and Jetson AGX Xavier series (T194) and Jetson TX2 series (T186)

Bit Size Name Description

1 odm_production_mode 0x1 for “production”

256 public_key_hash RSA public key hash.

128 secure_boot_key Secure Boot Key (SBK): AES encryption key for encrypting 
bootloader.

128 KEK0 Four 32‑bit registers named KEK00 through KEK03.

128 KEK1 Four 32‑bit registers named KEK10 through KEK13.

256 KEK256 Not a distinct fuse; addresses KEK0 and KEK1 as a single 
256‑bit fuse.

128 KEK2 Four 32‑bit registers named KEK20 through KEK23.

Tegra Linux Driver Package Development Guide/bootloader_secure_boot.html

https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3271/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootloader_secure_boot.html


#ossummit

Secure Boot: Fuses on Tegra Platforms (cont’d)

• Fuses can only be changed from a “0” to a “1”.

• NVidia recommends “burning” all the fuses at once. 
Plan ahead.

– In practice*:
• PKC

• SBK

• KEK{0,1}|256

• KEK2

 🔑 Keep your keys in ESCROW!

Image Source: https://pixabay.com/vectors/sign-caution-warning-danger-safety-304093/

*development stage (for production also burn odm_production_mode fuse, etc.)

https://pixabay.com/vectors/sign-caution-warning-danger-safety-304093/


#ossummit

Secure Boot: A Lovely Paperweight

• Despite reading the documentation multiple 
times.

• Despite “following all the instructions”.

https://forums.developer.nvidia.com/t/postmortem-jetson-xavier-agx-will-not-get-past-boot-rom-after-burning-pkc-sbk-kek256/208426

Image Source: https://en.wikipedia.org/wiki/Brick#/media/File:Brick.jpg

https://forums.developer.nvidia.com/t/postmortem-jetson-xavier-agx-will-not-get-past-boot-rom-after-burning-pkc-sbk-kek256/208426
https://en.wikipedia.org/wiki/Brick#/media/File:Brick.jpg


#ossummit

Secure Boot: secureboot-tegra

• Known good steps to:
– Generate keys
– Burn fuses
– Flash NVidia Ubuntu-based OS to target
– Prove Secure Boot is working!

• Paranoia?
– Use only bare-metal Ubuntu 18.04 host

https://github.com/konsulko/secureboot-tegra (for Jetson AGX Xavier and L4T 32.7.1)

Forked from: https://github.com/Trellis-Logic/secureboot-tegra

 🔑 Keep your keys in ESCROW!

https://github.com/konsulko/secureboot-tegra
https://github.com/Trellis-Logic/secureboot-tegra


#ossummit

Secure Boot: meta-tegra

https://github.com/OE4T/meta-tegra

• For Yocto Project/OpenEmbedded builds

• Well maintained and tested

• Secure Boot Support
– https://github.com/OE4T/meta-tegra/wiki/Secure-Boot-Support

TEGRA_SIGNING_ARGS = "-u /path/to/rsa_priv.pem -v /path/to/sbk_hex_file"

The resulting <image>-<machine>.tegraflash.tgz contains signed/encrypted artifacts, but 
is installed as normal (sudo ./doflash.sh)

https://github.com/OE4T/meta-tegra
https://github.com/OE4T/meta-tegra/wiki/Secure-Boot-Support


Disk Encryption



#ossummit

Disk Encryption: NVidia’s Implementation

• LUKS (Linux Unified Key Setup)

• Uses dm-crypt

• Scripts encrypt Ubuntu-based OS in chroot (in-place)
– Unencrypted “/boot” partition
– Encrypted “rootfs” (excluding /boot)

• Resulting images are then signed for Secure Boot and ready to “flash”

• LUKS passphrase is derived from keys in fuses, unique device id (ECID) and 
keys stored in EKB partition.

• Decryption is done by the initrd
– The luks-srv-app Client Application queries luks-srv Trusted Application on boot.
– Unlocks device-mapper devices.
– Switches to full rootfs.



#ossummit

Disk Encryption: Dead End (It seemed like a good idea)

• Create an image class to perform the 
LUKS encryption

– BUT
• BitBake tasks run in “pseudo” and real “sudo/root” 

privileges are not possible

– Can’t communicate with device-mapper to 
format LUKS container (create the LUKS header)

» Not gonna work (ok, maybe could use QEMU?)

https://github.com/moto-timo/meta-tegra/tree/deadend-dunfell-luks

https://github.com/moto-timo/meta-tegra/tree/deadend-dunfell-luks


#ossummit

Disk Encryption: Another “Good” Idea

• Keep per partition passphrase (like Nvidia implemention)

• Create another image class to generate unencrypted “/boot” 
partition

• (Ab)Use “var flags” to store per partition information

• At one point used xmllint and xmlstarlet to query and 
make changes to “flash.xml”

– BUT
• Over-engineered

• Need changes in “/etc/crypttab” per partition

• Nested ${} variable expansion hell

• Still haven’t addressed actual LUKS encryption

https://github.com/moto-timo/meta-tegra/commits/wip-dunfell-luks
https://github.com/moto-timo/tegra-demo-distro/tree/wip-dunfell-luks 

https://github.com/moto-timo/meta-tegra/commits/wip-dunfell-luks
https://github.com/moto-timo/tegra-demo-distro/tree/wip-dunfell-luks


#ossummit

Disk Encryption: Yocto Project/OpenEmbedded Friendlier Approach

• What if we?:

– Don’t rip apart the rootfs

– Perform disk encryption on-device

– Sign for Secure Boot independently of LUKS Disk Encryption

• BONUS: More production friendly

– Images can be signed on a dedicated secure machine.

– Images can be installed on the factory floor or in the field.

– A/B OTA updates can be performed in the field.



#ossummit

Disk Encryption: tegra-test-distro

• Two stage approach:

– first boots into a system installer which:
• creates the proper partitions (from “flash.xml”) with the LUKS headers

• writes the real rootfs (from a bundled tarball) into the now encrypted 
partition

• Installs bootloader update payload (BUP) with real initramfs

• Decouples secureboot signing from LUKS disk 
encryption

– the actual encryption is performed on the device which has 
already been booted securely.



#ossummit

Disk Encryption: tegra-test-distro (cont’d)

• Enable LUKS disk encryption:
MACHINEOVERRIDES =. "cryptparts:"
IMAGE_FSTYPES = “tar.gz tegraflash”

• Prefix encrypted partitions in flash.xml with “crypt-”

– Use “id=<number>” to set the order of partitions

• Build installer image:
bitbake tegra-sysinstall

• Functional branch(es) for Jetson AGX Xavier:
– https://github.com/moto-timo/tegra-test-distro/tree/kirkstone-agx

– https://github.com/madisongh/tegra-test-distro/pull/11

https://github.com/moto-timo/tegra-test-distro/tree/kirkstone-agx
https://github.com/madisongh/tegra-test-distro/pull/11


#ossummit

Disk Encryption: eks.img

• Stock fuses are all zeroes

– KEK2

• Stock eks.img is also “zeroes”

– user_key

• Generate your own eks.img
– Extended secureboot-tegra

https://github.com/moto-timo/secureboot-tegra/tree/jetson-agx-xavier-devkit-luks

https://github.com/moto-timo/secureboot-tegra/tree/jetson-agx-xavier-devkit-luks


#ossummit

Disk Encryption: A/B OTA Updates

• Because the disk encryption is performed on the 
device, you can build update bundles the same 
as normal.

• They should be installable on the running device 
as per normal procedures.

• It JustWorks™



Future Work



#ossummit

Future Work: Jetpack 5.0.2+ (OP-TEE, UEFI and 5.10.y Kernel)

• The GA release has support for Secure Boot and Disk Encryption

• Changed from ‘trusty’ to ‘OP-TEE’

– Ported luks-srv/luks-srv-app

– Ported hwkey-agent/hwkey-app

• Changed from ‘cboot’ to ‘UEFI’

• Changed from 4.9.y to 5.10.y kernel

• Supports Ubuntu 20.04 host

• Jetson AGX Xavier, Jetson Xavier NX and Jetson AGX Orin 
platforms only



#ossummit

Future Work: tegra-demo-distro

• Integrate components from tegra-test-distro fork into 
community supported tegra-demo-distro

– Add tegra-sysinstall

– Add crypt initramfs

– CI and tests!

– Short-term target is Jetpack 4.6.2/Linux4Tegra 32.7.2 and 
‘kirkstone’

– Upgrade to Jetpack 5.0.2+ (and ‘langsdale’)

https://github.com/madisongh/tegra-test-distro
https://github.com/OE4T/tegra-demo-distro
https://github.com/madisongh/tegra-sysinstall


Thank You!
● Matt Madison
● Ilies Chergui
● OE4T community



Questions?




	Slide 1
	Konsulko Group
	Abstract
	Agenda
	Slide 5
	Secure Boot: NVidia implementation primer
	Secure Boot: Caveats
	Secure Boot: Fuses on Tegra Platforms
	Secure Boot: Fuses on Tegra Platforms
	Secure Boot: A Lovely Paperweight
	Secure Boot: secureboot-tegra
	Secure Boot: meta-tegra
	Slide 13
	Disk Encryption: NVidia’s implementation
	Disk Encryption: Dead end (It seemed like a good idea)
	Slide 16
	Disk Encryption: Yocto Project/OpenEmbedded friendlier approach
	Disk Encryption: tegra-test-distro
	Disk Encryption: tegra-test-distro (cont’d)
	Disk Encryption: eks.img
	Disk Encryption: A/B OTA Updates
	Slide 22
	Future Work: Jetpack 5.0.2+ (OP-TEE, UEFI and 5.10.y kernel)
	Future Work: tegra-demo-distro
	Slide 25
	Slide 26
	Slide 27

