

How to Choose a Software Update
Mechanism for Embedded Linux Devices

Leon Anavi
Konsulko Group
leon.anavi@konsulko.com
leon@anavi.org
Embedded Linux Conference North America 2022

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Konsulko Group

 Services company specializing in Embedded Linux and Open Source Software

 Hardware/software build, design, development, and training services

 Based in San Jose, CA with an engineering presence worldwide

 http://konsulko.com/

http://konsulko.com/

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Agenda

 Things to consider

 Common embedded Linux update strategies

 Open source solutions

 Practical examples with Yocto/OpenEmbedded

 Conclusions

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Things to Consider: Update Size

 Are there any limitations of the disk space?

 Are there any limitations of the network bandwidth for the data transfer?

 According to cable.co.uk in the US
the average cost of mobile data is
$3.33 per 1GB

https://www.cable.co.uk/mobiles/worldwide-data-pricing/

https://www.cable.co.uk/mobiles/worldwide-data-pricing/

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Things to Consider: Data Transfer

What are the different ways of transferring data for the updates?

 Over the air using WiFi or cellular data

 Ethernet cable

 USB stick

 Something else

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Things to Consider: Managing Devices

 Do you need to update a single device or multiple devices?

 Are all of devices using the same software stack?

 Are all devices online and do you need to monitor the update of the devices?

 Do you need to update different devices at different times?

 How to update fleet of devices?

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Things to Consider: Building Images

 What distribution and build system do you use?

 Is there a BSP for the hardware you use?

 Is the software update technology compatible with the build system and the BSP?

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Build Frameworks for Embedded Linux Distro

Popular open source build systems for custom embedded Linux distributions:

 Yocto/OpenEmbedded

 Buildroot

 PTXdist

 OpenWRT

 Other

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Can I just use Debian?

 Debian is a stable full distribution with tens of thousands of packages available as
binary files for installation without the need to cross-compile from source

 Numerous Debian derivatives exist for embedded devices

 Debian or Yocto Project? Which is the Best for your Embedded Linux Project?
Chris Simmonds, Embedded Linux Conference Europe 2019
https://www.youtube.com/watch?v=iDllXa8SzUgr

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

The Yocto Project

 Open source collaborative project of the Linux foundation for creating custom
Linux-based systems for embedded devices using the OpenEmbedded Build
System

 OpenEmbedded Build System includes BitBake and OpenEmbedded Core

 Poky is a reference distribution of the Yocto Project provided as metadata, without
binary files, to bootstrap your own distribution for embedded devices

 Bi-annual release cycle

 Long term support (LTS) release covering two-year period

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Common Embedded Linux Update Strategies

 A/B updates (dual redundant scheme)

 Delta updates

 Container-based updates

 Combined strategies

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

A/B Upgrades

 Dual A/B identical rootfs partitions

 Data partition for storing any persistent data which is left unchanged during the
update process

 Typically a client application runs on the embedded device and periodically
connects to a server to check for updates

 If a new software update is available, the client downloads and installs it on the
other partition

 Fallback in case of update failure

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Delta Updates

 Only the binary delta between the difference is sent to the embedded device

 Works in a Git-like model for filesystem trees

 Saves storage space and connection bandwidth

 Rollback of the system to a previous state

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

A/B vs Delta Updates

Update
Strategy

Storage Space Update Size Rollback to a
Previous Stage

Fallback to a
Back-up Image
on separate
partition

A/B Updates Large Large Yes Yes

Delta Updates Small Small Yes No

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Container-based Updates

 Container technology has changed the way application developers interact with
the cloud and some of the good practices are nowadays applied to the
development workflow for embedded Linux devices and Internet of Things

 Containers make applications faster to deploy, easier to update and more secure
through isolation

 Yocto/OE layer meta-virtualization provides support for building Xen, KVM, Libvirt,
docker and associated packages necessary for constructing OE-based virtualized
solutions

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Combined Strategies

Multiple combinations exist for more complicated use cases, for example:

 A/B updates with delta updates

 Containers with A/B updates of the base custom embedded Linux distribution

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Popular open source solution for updates

 Mender

 RAUC

 SWUpdate

 Swupd

 UpdateHub

 Balena

 Snap

 libostree (OSTree)

 Aktualizr

 Aktualizr-lite

 QtOTA

 Torizon

 FullMetalUpdate

 Rpm-ostree (used in Project Atomic)

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender

 Available as a free open source or paid commercial/enterprise plans

 A/B update scheme for open source and all plans as well as delta updates for
professional and enterprise plans

 Back-end services (Hosted Mender)

 Written in Go, Python, JavaScript

 Yocto/OE integration through meta-mender and extra BSP layers:
https://github.com/mendersoftware/meta-mender

 Source code in GitHub under Apache 2.0

https://github.com/mendersoftware/meta-mender

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender Supported Devices

The following hardware platforms and development boards are supported:

 Raspberry Pi

 BeagleBone

 Intel x86-64

 Rockchip

 Allwinner

 NXP

 And more in: https://github.com/mendersoftware/meta-mender-community

https://github.com/mendersoftware/meta-mender-community

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

meta-mender-community

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

RAUC

 A lightweight update client that runs on an Embedded Linux device and reliably
controls the procedure of updating the device with a new firmware revision

 Supports multiple update scenarios

 Provides tool for the build system to create, inspect and modify update bundles

 Uses X.509 cryptography to sign update bundles

 Compatible with the Yocto Project, PTXdist and Buildroot

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

RAUC Licenses

 RAUC – LGPLv2.1
https://github.com/rauc/rauc

 meta-rauc - MIT
https://github.com/rauc/meta-rauc

 rauc-hawkbit – LGPLv2.1
https://github.com/rauc/rauc-hawkbit

 rauc-hawkbit-updater – LGPLv2.1
https://github.com/rauc/rauc-hawkbit-updater

https://github.com/rauc/rauc
https://github.com/rauc/meta-rauc
https://github.com/rauc/rauc-hawkbit
https://github.com/rauc/rauc-hawkbit-updater

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

RAUC Integration Steps

 Select an appropriate bootloader

 Enable SquashFS in the Linux kernel configurations

 ext4 root file system (RAUC does not have an ext2 / ext3 file type)

 Create specific partitions that matches the RAUC slots

 Configure Bootloader environment and create a script to switch RAUC slots

 Create a certificate and a keyring to RAUC’s system.conf

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

RAUC Data Partition

 Supports single and redundant data partitions

 For redundant data partitions the active rootfs slot has to mount the correct data
partition dynamically, for example with a udev rule

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

meta-rauc-community

 Yocto/OE layer with examples how to integrate RAUC on various machines

 Started in 2020

 Moved to the RAUC organization in GitHub in 2021

 Currently supports x86-64, QEMU, Raspberry Pi through meta-raspberrypi, Sunxi
(Allwinner) devices through meta-sunxi, NVIDIA Jetson TX2 through meta-tegra

 https://github.com/rauc/meta-rauc-community/

Contributions are always welcome as GitHub pull requests!

https://github.com/rauc/meta-rauc-community/

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

RAUC Example with Raspberry Pi 4

 Integration layer (branch Dunfell):
https://github.com/rauc/meta-rauc-community/tree/master/meta-rauc-raspberrypi

 Add layers to bblayers.conf and add the following configuration to local.conf:

MACHINE = "raspberrypi4"
DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"
DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_initscripts = ""
IMAGE_INSTALL_append = " rauc"
IMAGE_FSTYPES="tar.bz2 ext4 wic.bz2 wic.bmap"
SDIMG_ROOTFS_TYPE="ext4"
ENABLE_UART = "1"
RPI_USE_U_BOOT = "1"
PREFERRED_PROVIDER_virtual/bootloader = "u-boot"
WKS_FILE = "sdimage-dual-raspberrypi.wks.in"

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Manual RAUC Update of Raspberry Pi 4

 On the build system:

cd tmp/deploy/images/raspberrypi4/
python3 -m http.server

 On the embedded device:

wget http://example.com:8000/update-bundle-raspberrypi4.raucb -P /tmp
rauc install /tmp/update-bundle-raspberrypi4.raucb
reboot

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Eclipse hawkBit

 Domain independent back-end framework for rolling out software updates to
constrained edge devices as well as more powerful controllers and gateways
connected to IP based networking infrastructure

 Written in Java

 Available in GitHub under EPL-1.0 License

 Compatible with RAUC and SWUpdate

 https://www.eclipse.org/hawkbit/

https://www.eclipse.org/hawkbit/

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender

Mender A/B updates supports two client modes:

 Managed (default) - client running as a daemon polls the server for updates

 Standalone - updates are triggered locally which is suitable for physical media or
any network update in pull mode

SYSTEMD_AUTO_ENABLE_pn-mender = "disable"

$ cd tmp/deploy/images/raspberrypi4
$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

$ mender -install http://example.com:8000/core-image-base-raspberrypi4.mender

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender Data Partition

 Mender creates a /data partition to store persistent data, preserved during
Mender updates. Supports ext4, Btrfs and F2FS file systems.

 The Mender client on the embedded devices uses /data/mender to preserve data
and state across updates

 Variable MENDER_DATA_PART_SIZE_MB configures the size of the /data
partition. By default it is 128 MB. If enabled, mender feature mender-growfs-
data which relies on systemd-growfs tries to resize on first boot with the
remaining free space

 It is possible to create an image for the data partition in advance with bitbake:

IMAGE_FSTYPES:append = " dataimg"

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender

Steps to install Mender A/B update on embedded Device:

 Apply update

 Reboot

 On the first boot after a successful update, though the Mender client a commit
must be performed to accept the update (otherwise the system will roll-back
on next reboot)

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender Single File Artifact

 Deployment of a single file, directory or even a container image is possible
through “Application updates”

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender add-ons

Mender supports several add-ons:

 Remote Terminal - interactive shell sessions with full terminal emulation

 File Transfer - upload and download files to and from a device

 Port Forward - forward any local port to a port on a device without opening
ports on the device

 Configure - apply configuration to your devices through a uniform interface

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender with x86-64 support

 Mender added support for x86-64 machines through GRUB in 2018

 Initial installation of the distribution is most commonly done using a live image on
a USB stick

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Mender Delta Updates

 Mender offers robust delta update rootfs as a module for the commercial Mender
plan (closed source implementation)

 Requires reboot to apply the update

 Supports rollback

 Tool mender-binary-delta create a binary delta by comparing 2 different Mender
artifacts

 Mandatory requirement for the implementation is a read-only root file system

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Read-only Root Filesystem

Yocto and OpenEmbedded offer two options to create a read-only root filesystem:

 Thought the image’s recipe file:

IMAGE_FEATURES += "read-only-rootfs"

 Alternatively, through local.conf:

EXTRA_IMAGE_FEATURES = "read-only-rootfs"

 Beware, there might be packages in the image that expect the root filesystem to
be writable and might not function properly. A solution is to move these files and
directories to the data partition.

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Combined Strategies with Containers

 Yocto/OE layer meta-virtualization provides support for building Xen, KVM,
Libvirt, docker and associated packages necessary for constructing OE-based
virtualized solutions

 virtualization has to be added to the DISTRO_FEATURES:

DISTRO_FEATURES:append = " virtualization"

 For example adding Docker to the embedded Linux distribution is easy:

IMAGE_INSTALL:append = " docker-ce"

 There are use cases on powerful embedded devices where containers are
combined with A/B updates of the base Linux distribution built with Yocto/OE, for
example with RAUC or Mender

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

libostree

 Libostree (previously known as “OSTree”), is a shared library and tools for
distributing and deploying file system images as atomic upgrades of the whole file
system tree

 Provides a suite of command line tools that combines a “git-like” model for
committing and downloading bootable filesystem trees, along with a layer for
deploying them and managing the bootloader configuration.

 Effective with respect to disk space and connection bandwidth

 Supports rollback of the system to a previous state

 Used in many embedded Linux solutions: Fedora IoT, Torizon, Aktualizr, Aktualizr-
lite and QtOTA

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

libostree

 libostree encourages systems to implement UsrMove
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/

 libostree comes with optional dracut+systemd integration:
https://ostreedev.github.io/ostree/adapting-existing/

 libostree only preserves /var across upgrades

 /var is empty by default and the operating system needs to dynamically create the
targets of these at boot, for example with systemd-tmpfiles (if using systemd)

https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/
https://ostreedev.github.io/ostree/adapting-existing/

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Aktualizr and Aktualizr-lite with libostree

 Aktualizr is a C++ application that implements the client-side functionality for OTA
Connect according to the Uptane security framework

 libaktualizr provides API calls to perform the various steps that are necessary for
checking for updates, validating the files downloaded, etc
https://github.com/advancedtelematic/aktualizr

 Aktualizr-lite is a C++ implementation of TUF OTA update client based on aktualizr
without the complexity of Uptane
https://github.com/foundriesio/aktualizr-lite

 Yocto/OE integration:
https://github.com/advancedtelematic/meta-updater
https://github.com/foundriesio/meta-lmp

https://github.com/advancedtelematic/aktualizr
https://github.com/foundriesio/aktualizr-lite
https://github.com/advancedtelematic/meta-updater
https://github.com/foundriesio/meta-lmp

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Conclusion

 There are numerous things to consider when implementing an upgrade
mechanism for an embedded Linux device

 There are many reliable open source software solutions to upgrade embedded
Linux devices to use and worth developing another proprietary homegrown
solution

 Combined update strategies such as A/B upgrades with containers for
applications are increasingly popular nowadays

 The update process implementation depends on the build system and the
bootloader

 Often real-world solutions require a persistent data partition which is left
unchanged during the update process

ELC 2022, Leon Anavi, How to Choose a Software Update Mechanism for Embedded Linux Devices

Thank You!

Useful links:

 https://www.yoctoproject.org/

 https://mender.io/

 https://rauc.io/

 https://ostreedev.github.io/ostree/

 https://www.konsulko.com/building-platforms-with-secure-ove
r-the-air-updating/

 https://www.konsulko.com/how-mender-works/

 https://www.konsulko.com/getting-started-with-rauc-on-raspb
erry-pi-2/

https://www.yoctoproject.org/
https://mender.io/
https://rauc.io/
https://ostreedev.github.io/ostree/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/building-platforms-with-secure-over-the-air-updating/
https://www.konsulko.com/how-mender-works/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/
https://www.konsulko.com/getting-started-with-rauc-on-raspberry-pi-2/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

