
Vitaly Wool / Maria Wool, Konsulko AB

Edge Computing with RISC-V
Platforms Running XIP Linux

About us: Maria

 Photographer, video and QA
engineer

 started off with Android CTS
testing

 Currently living in Malmö,
Sweden

About us

 Has been working with
embedded Linux since 2003

 Currently living in Malmö,
Sweden

 Staff Engineer at Konsulko
Group

 Managing Director at Konsulko
AB

About this presentation

 RISC-V overview

 XIP overview and Linux XIP

 RISC-V and Edge computing

 XIP on RISC-V: what's done and what's to be done

 Edge computing with XIP on RISC-V

RISC-V

RISC-V: what it is and
what it is not

 open source hardware Instruction Set Architecture
(ISA)
 RISC (reduced instruction set)

 Royalty free for any chip manufacturer

 Developed by UC Berkeley
 V stands for 5-th RISC design from Berkeley

 Standard maintained by non-profit RISC-V foundation

 It’s not a CPU implementation nor a company

RISC-V vs ARM

RISC-V ARM

Instruction set RISC (load/store) RISC (load/store)

32 bit supported yes yes

64 bit supported yes yes

128 bit supported no yes

Licesning free and open
source ISA

proprietary ISA

Community emerging well estiablished

XIP for 32-bit MMU no yes

XIP for 64-bit MMU yes no

XIP for 32-bit !MMU in progress yes

XIP for 64-bit !MMU ready, not merged no

XIP in a nutshell

XIP: execute in place

 The code is executed directly from persistent storage
 as opposed to executing from RAM
 everything should be resolved at compile time

 Media
 Typically NOR flash
 QSPI

 More common for RTOSes
 compile time resolution is not a limitation
 no userspace/kernelspace, monolithic application to be

flashed

XIP on Linux

 Kernel XIP is supported in Linux

 Support for ARM32 goes way back

 RISC-V support has been merged in 5.13

 Userspace can be run as XIP as well
 requires special filesystem

XIP advantages

 Less RAM needed
 Usually up to 10x smaller RAM footprint
 Sometimes no RAM at all is needed

 Lower idle power consumption
 May be crucial for IoT running on battery

 Shorter boot time
 No copy on boot

 Faster execution
 QSPI flash

XIP obstacles

RISC-V and Edge
Computing

Edge computing

 Extends the traditional cloud based IoT model
 client data is processed at the periphery of the network
 literally “closer to the edge”

 reduces volumes of data to be moved

 allows for a better utilization of many “small
computational powers”

 enables AI in IoT where the connection is weak /
intermittent

Edge computing with
RISC-V

 RISC-V is becoming increasingly popular in modern
IoT designs
 relatively high computational power for MCUs
 open source hardware design, no royalties

 RISC-V support in many RTOSes is still somewhat
lacking

 Edge computing applications are relatively
complicated
 harder to debug in traditional single-app RTOS

environment

RISC-V MCUs Linux
support

 Many RISC-V MCUs are supported by Linux kernel
 notably, the K210 family

 Cheap development boards available
 e. g. Maixduino

RISC-V MCUs and IoT

 It's tempting to run Linux on RISC-V MCUs for IoT
 faster development

 easier debugging

 Shorter time to market

 However, such designs are relatively expensive
 Linux requires a lot of RAM to run

 Linux is generally more power hungry than RTOSes

 Some way for painless cost optimization has to be
found

Edge computing with
XIP

XIP is the answer

 Reiterate the main issues with RISC-V/Linux edge
computing
 cost of the design

 shorter lifetime on battery

 XIP allows for drastic RAM reduction
 also to reduce footprint

 XIP allows for (almost) zero power consumption in idle

 XIP technology is transparent for application development
 i. e. you can prototype without XIP enabled

Real life example

 Application: Image capture / recognition

 Hardware: Maixduino [link]
 RISC-V Dual Core 64bit, with FPU

 8MB SRAM (of which 2 MB for AI)

 8 MiB NOR flash

 Software: Linux
 kernel 5.15

 buildroot-based userspace (newlib)

Linux (no XIP)

 Kernel
 Flash consumed: 400k
 RAM consumed: 1170k + dynamic

 Root filesystem
 Flash consumed: 500k
 RAM consumed: 1Mb-4Mb

 Application
 Flash consumed: 560k
 RAM consumed: <2M

Linux (XIP)

 Kernel
 Flash consumed: 1240k

 RAM consumed: 252k + dynamic

 Root filesystem
 Flash consumed: 1M

 RAM consumed: < 1M

 Application
 Flash consumed: 560k

 RAM consumed: <2M

Conclusions

 XIP goes very well with what RISC-V designs have to
offer

 XIP technology allows to reduce design costs and
device power consumption for RISC-V IoT designs

 XIP technology makes it possible to run Linux in low-
cost Edge computing solutions

Thanks for your
attention!

Vitaly.Wool@konsulko.com

