
Vitaly Wool / Maria Wool, Konsulko AB

Edge Computing with RISC-V
Platforms Running XIP Linux

About us: Maria

 Photographer, video and QA
engineer

 started off with Android CTS
testing

 Currently living in Malmö,
Sweden

About us

 Has been working with
embedded Linux since 2003

 Currently living in Malmö,
Sweden

 Staff Engineer at Konsulko
Group

 Managing Director at Konsulko
AB

About this presentation

 RISC-V overview

 XIP overview and Linux XIP

 RISC-V and Edge computing

 XIP on RISC-V: what's done and what's to be done

 Edge computing with XIP on RISC-V

RISC-V

RISC-V: what it is and
what it is not

 open source hardware Instruction Set Architecture
(ISA)
 RISC (reduced instruction set)

 Royalty free for any chip manufacturer

 Developed by UC Berkeley
 V stands for 5-th RISC design from Berkeley

 Standard maintained by non-profit RISC-V foundation

 It’s not a CPU implementation nor a company

RISC-V vs ARM

RISC-V ARM

Instruction set RISC (load/store) RISC (load/store)

32 bit supported yes yes

64 bit supported yes yes

128 bit supported no yes

Licesning free and open
source ISA

proprietary ISA

Community emerging well estiablished

XIP for 32-bit MMU no yes

XIP for 64-bit MMU yes no

XIP for 32-bit !MMU in progress yes

XIP for 64-bit !MMU ready, not merged no

XIP in a nutshell

XIP: execute in place

 The code is executed directly from persistent storage
 as opposed to executing from RAM
 everything should be resolved at compile time

 Media
 Typically NOR flash
 QSPI

 More common for RTOSes
 compile time resolution is not a limitation
 no userspace/kernelspace, monolithic application to be

flashed



XIP on Linux

 Kernel XIP is supported in Linux

 Support for ARM32 goes way back

 RISC-V support has been merged in 5.13

 Userspace can be run as XIP as well
 requires special filesystem

XIP advantages

 Less RAM needed
 Usually up to 10x smaller RAM footprint
 Sometimes no RAM at all is needed

 Lower idle power consumption
 May be crucial for IoT running on battery

 Shorter boot time
 No copy on boot

 Faster execution
 QSPI flash

XIP obstacles

RISC-V and Edge
Computing

Edge computing

 Extends the traditional cloud based IoT model
 client data is processed at the periphery of the network
 literally “closer to the edge”

 reduces volumes of data to be moved

 allows for a better utilization of many “small
computational powers”

 enables AI in IoT where the connection is weak /
intermittent

Edge computing with
RISC-V

 RISC-V is becoming increasingly popular in modern
IoT designs
 relatively high computational power for MCUs
 open source hardware design, no royalties

 RISC-V support in many RTOSes is still somewhat
lacking

 Edge computing applications are relatively
complicated
 harder to debug in traditional single-app RTOS

environment

RISC-V MCUs Linux
support

 Many RISC-V MCUs are supported by Linux kernel
 notably, the K210 family

 Cheap development boards available
 e. g. Maixduino

RISC-V MCUs and IoT

 It's tempting to run Linux on RISC-V MCUs for IoT
 faster development

 easier debugging

 Shorter time to market

 However, such designs are relatively expensive
 Linux requires a lot of RAM to run

 Linux is generally more power hungry than RTOSes

 Some way for painless cost optimization has to be
found

Edge computing with
XIP

XIP is the answer

 Reiterate the main issues with RISC-V/Linux edge
computing
 cost of the design

 shorter lifetime on battery

 XIP allows for drastic RAM reduction
 also to reduce footprint

 XIP allows for (almost) zero power consumption in idle

 XIP technology is transparent for application development
 i. e. you can prototype without XIP enabled

Real life example

 Application: Image capture / recognition

 Hardware: Maixduino [link]
 RISC-V Dual Core 64bit, with FPU

 8MB SRAM (of which 2 MB for AI)

 8 MiB NOR flash

 Software: Linux
 kernel 5.15

 buildroot-based userspace (newlib)

Linux (no XIP)

 Kernel
 Flash consumed: 400k
 RAM consumed: 1170k + dynamic

 Root filesystem
 Flash consumed: 500k
 RAM consumed: 1Mb-4Mb

 Application
 Flash consumed: 560k
 RAM consumed: <2M

Linux (XIP)

 Kernel
 Flash consumed: 1240k

 RAM consumed: 252k + dynamic

 Root filesystem
 Flash consumed: 1M

 RAM consumed: < 1M

 Application
 Flash consumed: 560k

 RAM consumed: <2M

Conclusions

 XIP goes very well with what RISC-V designs have to
offer

 XIP technology allows to reduce design costs and
device power consumption for RISC-V IoT designs

 XIP technology makes it possible to run Linux in low-
cost Edge computing solutions

Thanks for your
attention!

Vitaly.Wool@konsulko.com

