
Evolving Vehicle Signal
Specification Usage in AGL

AGL All Member Meeting
July 12, 2023
Scott Murray (scott.murray@konsulko.com)

About me

• Linux user/developer since 1994
• Embedded Linux developer since 2000
• Principal Software Engineer at Konsulko Group since

2014
• Working on AGL on contract since 2016

• Yocto Project maintenance
• Demo development, integration, and maintenance

2

Agenda

• Vehicle Signal Specification (VSS)
• Vehicle Information Server (VIS) Service
• KUKSA.val
• KUKSA.val & VSS usage in AGL
• Future Development

3

Caveat

• Some content duplicated from Berlin AMM and EOSS
presentations…

• … but updates with respect to future planning

4

Vehicle Signal Specification

• Vehicle Signal Specification (VSS)
• Open source project started under COVESA

• https://github.com/COVESA/vehicle_signal_specification
• Major component of COVESA/W3C Common Vehicle

Interface Initiative Project (CVII)
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Associated standardizations underway at W3C

5

https://github.com/COVESA/vehicle_signal_specification

Vehicle Signal Specification (continued)

• Hierarchical signal schema
• e.g. Vehicle.Powertrain.CombustionEngine.Speed
• Typically stored in JSON format, other formats also

possible
• Generated from higher level metadata (vspec files)
• Metadata tools (vss-tools) available

• Schema currently at version 4.0
• Major recent addition is support for structured

datatypes for signal values

6

VSS Signal vspec Example

Speed:
 datatype: float
 type: sensor
 unit: km/h
 description: Vehicle speed.

From:
https://github.com/COVESA/vehicle_signal_specification/blob/master/spec/Vehicle/Vehicle.vspec

7

https://github.com/COVESA/vehicle_signal_specification/blob/master/spec/Vehicle/Vehicle.vspec

VSS Signal JSON Example

"Speed": {
 "datatype": "float",
 "description": "Vehicle speed.",
 "type": "sensor",
 "unit": "km/h",
 "uuid": "efe50798638d55fab18ab7d43cc490e9"
},

From:
https://github.com/eclipse/kuksa.val/blob/master/data/vss-core/vss_release_3.1.1.json

8

https://github.com/eclipse/kuksa.val/blob/master/data/vss-core/vss_release_3.1.1.json

Vehicle Information Service

• Vehicle Information Service (VIS) Specification
• Open source project started under COVESA
• Developed by BMW, Volvo, Bosch, JLR, etc.
• Standardization process underway with W3C
• HTTPS, Websocket, and MQTT APIs to access VSS

signals
• Get, Set, Subscribe, etc.

• Reference implementation in Go
• https://github.com/w3c/automotive-viss2

• Also a partial implementation in C++ in KUKSA.val

9

https://github.com/w3c/automotive-viss2

KUKSA.val

• https://github.com/eclipse/kuksa.val
• Server primarily developed by Bosch, with

contributions from others
• Implements most of VIS v1 and some of VIS v2
• Also extends VIS with a gRPC version of the API

• KUKSA.val "databroker"
• JSON web token (JWT) authorization mechanism
• Python and Go client libraries, with examples
• Python feeder clients to push signal data

10

https://github.com/eclipse/kuksa.val

KUKSA.val (continued)

• C++ server provides mechanism for modifying or
adding new signals via overlay JSON files

• Databroker does not have its own overlay scheme
• Overlays done at vspec level and full VSS tree generated

with vss-tools
• Currently used in AGL demo for steering wheel

switches and a few other signals
• meta-agl-demo/recipes-connectivity/vss/vss-agl/agl_vss_overlay.vspec

11

VSS vspec Overlay Example

Vehicle.Speed:
 datatype: float
 type: sensor
 dbc:
 signal: PT_VehicleAvgSpeed
 interval_ms: 100

From:
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl_vss_
overlay.vspec

12

https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl_vss_overlay.vspec
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl_vss_overlay.vspec

KUKSA.val Feeders

• DBC feeder
• Pushes selected CAN data to configured VSS signals
• Uses DBC (CAN database) file for CAN signal definitions

• DBC format comes from Vector, but is documented
• YAML configuration file for CAN to VSS signal mapping in

0.2.x
• Since 0.3.0 uses signal annotations applied using vspec

overlays
• GPS feeder

• Pushes location data from gpsd
• Replay feeder

• Can be used to replay a stream of VIS updates

13

KUKSA.val & VSS Usage in AGL

14

KUKSA.val

• KUKSA.val server was initially added in the Marlin
(13.0) release
• Replacement for agl-service-can-low-level and

agl-service-signal-composer
• A recipe to build the server is carried in the

meta-agl-demo layer
• Custom AGL VSS generated by applying overlay vspec file

on top of base VSS
• The DBC feeder is also built and packaged with a

recipe in meta-agl-demo
• Uses DBC file with minimal "agl-vcar" CAN signal

definitions

15

KUKSA.val & VSS Releases in AGL

• Magic Marlin (13.0) - Spring 2022
• KUKSA.val 0.2.1 integrated
• VSS 2.2
• Using C++ server with VIS WebSocket API
• kuksa-dbc-feeder CAN feeder for demos

• Nifty Needlefish (14.0) - Summer 2022
• Upgraded to KUKSA.val 0.2.5 and VSS 3.0

• Optimistic Octopus (15.0) - Spring 2023
• Upgraded to KUKSA.val 0.3.1 and VSS 3.1.1
• Switch to using vspec overlay with vss-tools

16

Prickly Pike (16.0.0)

• Still using KUKSA.val 0.3.1
• But newer post 0.3.1 commit to pick up some databroker

improvements
• Databroker included in images for evaluation and

testing
• Tests Rust 1.68 Yocto mixin layer required for building

databroker
• Application conversion to use KUKSA.val "VAL" gRPC

API against databroker still in progress
• Will not make 16.0.0…

17

VSS/VIS Using Applications

• Two categories
• Pure VSS signal observers

• e.g. dashboard applications
• Read "sensors" in VSS terminology

• VSS signal actors
• e.g. services like agl-service-hvac
• Implement "actuators" in VSS terminology

• KUKSA.val optionally extends VIS
• Set actuator target value -> actuator sets sensor value
• Not a hard requirement, but model somewhat assumed

when using databroker

18

agl-service-hvac

• Original application framework based code leveraged
to implement a service backend for VSS HVAC signals

• Currently WebSocket client via Boost library
• Listens for fan speed and temperature actuator

changes
• Pushes fan speed updates out to HVAC controller via

CAN
• Pushes temperature updates out to LEDs in demo

unit via GPIO

19

agl-service-audiomixer

• In legacy application framework provided main and
per-role volume controls
• Sits on top of WirePlumber API

• With the removal of the application framework, code
leveraged to implement a new service backend for
VSS volume signal
• Vehicle.Cabin.Infotainment.Media.Volume

• VSS does not currently have finer grained volume
control signals
• Plan is to perhaps expose a gRPC API for those

20

Qt Demo Applications

• VSS signal using applications:
• Homescreen
• Dashboard
• Cluster dashboard
• HVAC
• Navigation

• VIS WebSocket client code is abstracted in
libqtappfw-vehicle-signals Qt library to reduce code
duplication

21

Flutter Demo Applications

• VSS signal using applications:
• Homescreen
• Dashboard
• Cluster dashboard
• HVAC

• WebSocket client code is currently duplicated in each
application, but is not large

22

Future Development

23

VSS

• VSS 4.0 released in late May
• Has some known impact with signal name changes

• Left/Right changes to Driver/Passenger
• Structure support does not have an impact (yet)

• Current upstream plan is existing VSS signals will not be
changed to use structs

• We have VSS version flexibility with KUKSA.val…
• VSS schema is a configuration option
• Currently using 3.1.1 for Pike 16.0.0
• Will switch to 4.0 for Quillback

24

VSS (continued)

• There has been some discussion upstream on
whether standardized sets of VSS signals are
required
• Idea currently does not seem to have much traction
• But does seem possible down the road

• Ongoing discussion to expand scope
• Expanding capabilities to ease integration with cloud

data services
• Potential impact currently unclear

• So far seems to be a strong desire to keep VSS simple

25

KUKSA.val

• Upstream has deprecated original C++ server for
Rust based databroker

• Databroker
• Does not implement VIS WebSocket API support
• "VAL" gRPC API is similar to VIS v1
• Currently built into images, but not directly used

• Complete switchover to using databroker in Quirky
Quillback (17.0)
• Perhaps backport changes to Pike 16.x for CES 2024

• May start moving VSS & KUKSA.val recipes to
meta-agl in Quillback
• Would simplify use by downstream users

26

KUKSA.val (continued)

• Python "kuksa-viss" VIS proxy for databroker recently
created
• Some potential to ease migration to databroker
• Plan is to at least add recipe in Quillback to have it

available
• Mock service recently added to kuksa-services

example repository
• https://github.com/eclipse/kuksa.val.services
• Python API for mocking actuators and sensors for

application testing
• Some investigation required to see if an example

integration is worthwhile

27

https://github.com/eclipse/kuksa.val.services

Applications

• Plan is still to convert all existing VSS/VIS clients to
the databroker gRPC API

• Qt demo conversion is prototyped
• Slight blocker in getting TLS support debugged

• Flutter demo conversion not yet started
• Possibly will use kuksa-viss proxy in the short-term
• Possible code contribution from Harman
• Longer term may investigate using native Rust gRPC

• Some possible efficiency gains to be had by
refactoring apps to better take advantage of API

28

Applications (continued)

• Still need to investigate API authorization schemes
• Currently just pointing at tokens in filesystem
• systemd credentials mechanism, OAuth?

• May need to consider TLS certificate generation
• KUKSA.val upstream plans to move to requiring TLS by

default and also to stop shipping default certificates
• Unclear whether our shipping default demo certificates

is going to be problematic or not
• Documentation!

• Aiming to get integration documentation into Pike 16.0.x
point release

29

More Information

30

More information

• Vehicle Abstraction with Eclipse Kuksa and Eclipse
Velocitas - Sven Erik Jeroschewski, Bosch Digital
https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstracti

onwithEclipseKuksaandEclipseVelocitas.pdf

https://www.youtube.com/watch?v=LHJnBKb1Ta8

• Vehicle Signaling Specification and KUKSA.val in AGL
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20an

d%20KUKSA.val%20in%20AGL.pdf

https://www.youtube.com/watch?v=RhSocQDu_DY

31

https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://www.youtube.com/watch?v=LHJnBKb1Ta8
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://www.youtube.com/watch?v=RhSocQDu_DY

Questions?

32

