|
N\
- - Evolving Vehicle Signal

AUTOMOTIVE .o . .
GRADE Specification Usage in AGL

AGL All Member Meeting
July 12, 2023

Scott Murray (scott.murray@konsulko.com)

OOOOOOOOOO



TTTTTTTTTT

About me

Linux user/developer since 1994

Embedded Linux developer since 2000

Principal Software Engineer at Konsulko Group since
2014

Working on AGL on contract since 2016

* Yocto Project maintenance
* Demo development, integration, and maintenance

OOOOOOOOOO



Agenda

* Vehicle Signal Specification (VSS)
* Vehicle Information Server (VIS) Service
 KUKSA.val

 KUKSA.val & VSS usage in AGL
* Future Development

AAAAAAAAAAAAAAA



Caveat

* Some content duplicated from Berlin AMM and EOSS
presentations...
* ... but updates with respect to future planning

AAAAAAAAAAAAAAA



Vehicle Signal Specification

* Vehicle Signal Specification (VSS)
* Open source project started under COVESA
* https://github.com/COVESA/vehicle_signal_specification
* Major component of COVESA/W3C Common Vehicle
Interface Initiative Project (CVII)

* Developed by BMW, Volvo, Bosch, JLR, etc.
* Associated standardizations underway at W3C

OOOOOOOOOO


https://github.com/COVESA/vehicle_signal_specification

Vehicle Signal Specification (continued)

* Hierarchical signal schema
* e.g. Vehicle.Powertrain.CombustionEngine.Speed
* Typically stored in JSON format, other formats also
possible
* Generated from higher level metadata (vspec files)
 Metadata tools (vss-tools) available

 Schema currently at version 4.0

 Major recent addition is support for structured
datatypes for signal values



VSS Signal vspec Example

Speed:
datatype: float
type: sensor
unit: km/h

description: Vehicle speed.

From:
https://github.com/COVESA/vehicle signal specification/blob/master/spec/Vehicle/Vehicle.vspec
AL@E TJLINUX

GRADE FOUNDATION


https://github.com/COVESA/vehicle_signal_specification/blob/master/spec/Vehicle/Vehicle.vspec

VSS Signal JSON Example

"Speed": {

"datatype": "float",

"description": "Vehicle speed.",

"type": "sensor",

"unit": "km/h",

"uuid": "efeb0798638db5fabl8ab7d43cc490e9"
}I

From:
https://github.com/eclipse/kuksa.val/blob/master/data/vss-core/vss release 3.1.1.json

THE
AUTOMIITIVE I IN
GRADE FOUNDATION



https://github.com/eclipse/kuksa.val/blob/master/data/vss-core/vss_release_3.1.1.json

Vehicle Information Service

Vehicle Information Service (VIS) Specification
Open source project started under COVESA
Developed by BMW, Volvo, Bosch, JLR, etc.
Standardization process underway with W3C
HTTPS, Websocket, and MQTT APIs to access VSS
signals

* Get, Set, Subscribe, etc.

* Reference implementation in Go
* https://github.com/w3c/automotive-viss2

* Also a partial implementation in C++ in KUKSA.val

AAAAAAAAAAAAAAA


https://github.com/w3c/automotive-viss2

KUKSA.val

* https://github.com/eclipse/kuksa.val

* Server primarily developed by Bosch, with
contributions from others

* Implements most of VIS vl and some of VIS v2

* Also extends VIS with a gRPC version of the API
 KUKSA.val "databroker”

* JSON web token (JWT) authorization mechanism
* Python and Go client libraries, with examples
* Python feeder clients to push signal data

AAAAAAAAAAAAAAA


https://github.com/eclipse/kuksa.val

KUKSA.val (continued)

* C++ server provides mechanism for modifying or
adding new signals via overlay JSON files

* Databroker does not have its own overlay scheme
* Overlays done at vspec level and full VSS tree generated
with vss-tools
* Currently used in AGL demo for steering wheel

switches and a few other signals
* meta-agl-demo/recipes-connectivity/vss/vss-agl/agl vss overlay.vspec



VSS vspec Overlay Example

Vehicle.Speed:
datatype: float
type: sensor
dbc:
signal: PT VehicleAvgSpeed
interval ms: 100

From:

https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl vss
OVeriay.-Vspec

@
m THE

AUTONTIVE T JLINUX

GRADE FOUNDATION
12



https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl_vss_overlay.vspec
https://git.automotivelinux.org/AGL/meta-agl-demo/tree/recipes-connectivity/vss/vss-agl/agl_vss_overlay.vspec

KUKSA.val Feeders

* DBC feeder
* Pushes selected CAN data to configured VSS signals

* Uses DBC (CAN database) file for CAN signal definitions
e DBC format comes from Vector, but is documented

* YAML configuration file for CAN to VSS sighal mapping in

0.2.X
* Since 0.3.0 uses signal annotations applied using vspec

overlays

* GPS feeder
* Pushes location data from gpsd

* Replay feeder
* Can be used to replay a stream of VIS updates




KUKSA.val & VSS Usage in AGL

AAAAAAAAAAAAAAA



KUKSA.val

 KUKSA.val server was initially added in the Marlin

(13.0) release
* Replacement for agl-service-can-low-level and
agl-service-signal-composer o
* Arecipe to build the server is carried in the
meta-agl-demo layer
 Custom AGL VSS generated by applying overlay vspec file
on top of base VSS
 The DBC feeder is also built and packaged with a
recipe in meta-agl-demo
* Uses DBC file with minimal "agl-vcar” CAN signal
definitions




KUKSA.val & VSS Releases in AGL

* Magic Marlin (13.0) - Spring 2022
 KUKSA.val 0.2.1 integrated
e VSS 2.2
* Using C++ server with VIS WebSocket API
e kuksa-dbc-feeder CAN feeder for demos

* Nifty Needlefish (14.0) - Summer 2022
 Upgraded to KUKSA.val 0.2.5 and VSS 3.0

e Optimistic Octopus (15.0) - Spring 2023
 Upgraded to KUKSA.val 0.3.1 and VSS 3.1.1
e Switch to using vspec overlay with vss-tools



Prickly Pike (16.0.0)

 Still using KUKSA.val 0.3.1
 But newer post 0.3.1 commit to pick up some databroker
Improvements

* Databroker included in images for evaluation and
testing

e Tests Rust 1.68 Yocto mixin layer required for building
databroker

* Application conversion to use KUKSA.val "VAL" gRPC

APl against databroker still in progress
 Will not make 16.0.0...



VSS/VIS Using Applications

* Two categories

* Pure VSS signal observers
e e.g.dashboard applications
 Read "sensors" in VSS terminology

e VSS signal actors
e e.g.services like agl-service-hvac
* Implement "actuators" in VSS terminology

 KUKSA.val optionally extends VIS
* Set actuator target value -> actuator sets sensor value
* Not a hard requirement, but model somewhat assumed
when using databroker

£ =
AUTOMATIVE
GRADE



agl-service-hvac

* Original application framework based code leveraged
to implement a service backend for VSS HVAC signals

* Currently WebSocket client via Boost library

* Listens for fan speed and temperature actuator
changes

* Pushes fan speed updates out to HVAC controller via
CAN

* Pushes temperature updates out to LEDs in demo
unit via GPIO

AAAAAAAAAAAAAAA



agl-service-audiomixer

* |n legacy application framework provided main and

per-role volume controls
* Sits on top of WirePlumber API

* With the removal of the application framework, code
leveraged to implement a new service backend for

VSS volume signal
* Vehicle.Cabin.Infotainment.Media.Volume
* VSS does not currently have finer grained volume

control signals
* Plan is to perhaps expose a gRPC API for those

OOOOOOOOOO



Qt Demo Applications

* VSS signal using applications:
* Homescreen
* Dashboard

 Cluster dashboard
e HVAC

* Navigation

* VIS WebSocket client code is abstracted in
libgtappfw-vehicle-signals Qt library to reduce code
duplication



Flutter Demo Applications

* VSS signal using applications:
* Homescreen
 Dashboard
* Cluster dashboard
« HVAC

* WebSocket client code is currently duplicated in each
application, but is not large



Future Development

AAAAAAAAAAAAAAA



VSS

* VSS 4.0 released in late May

* Has some known impact with signal name changes
» Left/Right changes to Driver/Passenger

» Structure support does not have an impact (yet)
* Current upstream plan is existing VSS signals will not be
changed to use structs

* We have VSS version flexibility with KUKSA.val...
* VSS schema is a configuration option
* Currently using 3.1.1 for Pike 16.0.0
* Will switch to 4.0 for Quillback



VSS (continued)

* There has been some discussion upstream on

whether standardized sets of VSS signals are
required
* |dea currently does not seem to have much traction
 But does seem possible down the road

* Ongoing discussion to expand scope

* Expanding capabilities to ease integration with cloud
data services

* Potential impact currently unclear
e So far seems to be a strong desire to keep VSS simple

AUTOMIITIVE
GRADE



KUKSA.val

* Upstream has deprecated original C++ server for
Rust based databroker

e Databroker

* Does not implement VIS WebSocket API support
 "VAL" gRPC API is similar to VIS v1
* Currently built into images, but not directly used

. ComB ete switchover to using databroker in Quirky

Quillback (17.0)
* Perhaps backport changes to Pike 16.x for CES 2024

* May start mowrl\I% VSS & KUKSA.val recipes to

meta-agl in Quillback
* Would simplify use by downstream users




KUKSA.val (continued)

* Python "kuksa-viss" VIS proxy for databroker recently

created

* Some potential to ease migration to databroker

* Planis to at least add recipe in Quillback to have it
available

* Mock service recently added to kuksa-services
example repository
o https://github.com/eclipse/kuksa.val.services
* Python APl for mocking actuators and sensors for
application testing

* Some investigation required to see if an example
integration is worthwhile

OOOOOOOOOO


https://github.com/eclipse/kuksa.val.services

TTTTTTTTTT

Applications

Plan is still to convert all existing VSS/VIS clients to
the databroker gRPC API

Qt demo conversion is prototyped

* Slight blocker in getting TLS support debugged

Flutter demo conversion not yet started

* Possibly will use kuksa-viss proxy in the short-term
* Possible code contribution from Harman

* Longer term may investigate using native Rust gRPC

Some possible efficiency gains to be had by
refactoring apps to better take advantage of API

OOOOOOOOOO



Applications (continued)

 Still need to investigate API authorization schemes
* Currently just pointing at tokens in filesystem
* systemd credentials mechanism, OAuth?
* May need to consider TLS certificate generation
 KUKSA.val upstream plans to move to requiring TLS by
default and also to stop shipping default certificates
* Unclear whether our shipping default demo certificates
is going to be problematic or not
* Documentation!
 Aiming to get integration documentation into Pike 16.0.x
point release

OOOOOOOOOO



More Information

AAAAAAAAAAAAAAA



More information

* Vehicle Abstraction with Eclipse Kuksa and Eclipse
Velocitas - Sven Erik Jeroschewski, Bosch Digital

https://static.sched.com/hosted files/aglammspring2023/5c/VehicleAbstracti
onwithEclipseKuksaandEclipseVelocitas.pdf

https://www.youtube.com/watch?v=LHJnBKb1Ta8

* Vehicle Signaling Specification and KUKSA.val in AGL

https://static.sched.com/hosted files/aglammspring2023/8f/VSS%20an
d%20KUKSA.val%20in%20AGL.pdf

https://www.youtube.com/watch?v=RhSocQDu DY

THE
AUTOMITIVE I IN
GRADE FOUNDATION


https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://www.youtube.com/watch?v=LHJnBKb1Ta8
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://www.youtube.com/watch?v=RhSocQDu_DY

Questions?

AAAAAAAAAAAAAAA



